Про оборотність оператора d/dt + A в деяких функціональних просторах
Доказано, что оператор d/dt+A, построенный с помощью секториального оператора A со спектром в правой полуплоскости C. является непрерывно обратимым в пространствах Соболева W¹p(R,Dα),α ≥ 0. Здесь Dα — область определения оператора A^α, норма в Dα — норма графика оператора A^α. We prove that the oper...
Saved in:
| Published in: | Український математичний журнал |
|---|---|
| Date: | 2007 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2007
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/172465 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Про оборотність оператора d/dt + A в деяких функціональних просторах / М.Ф. Городній // Український математичний журнал. — 2007. — Т. 59, № 8. — С. 1020–1025. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Доказано, что оператор d/dt+A, построенный с помощью секториального оператора A со спектром в правой полуплоскости C. является непрерывно обратимым в пространствах Соболева W¹p(R,Dα),α ≥ 0. Здесь Dα — область определения оператора A^α, норма в Dα — норма графика оператора A^α.
We prove that the operator d/dt+A constructed on the basis of a sectorial operator A with spectrum in the right half-plane of C is continuously invertible in the Sobolev spaces W¹p(R,Dα),α ≥ 0. Here, Dα is the domain of definition of the operator A^α and the norm in Dα is the norm of the graph of A^α.
|
|---|---|
| ISSN: | 1027-3190 |