Нарізно неперервні відображення зі значеннями в не локально опуклих просторах
Доказано, что для метризуемого пространства X, совершенно нормального пространства Y и сильно σ-метризуемого топологического векторного пространства Z, имеющего исчерпывание, которое состоит из замкнутых метризуемых сепарабельных линейно связных и локально линейно связных подпространств Zm пространс...
Gespeichert in:
| Veröffentlicht in: | Український математичний журнал |
|---|---|
| Datum: | 2007 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | Ukrainian |
| Veröffentlicht: |
Інститут математики НАН України
2007
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/172518 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Нарізно неперервні відображення зі значеннями в не локально опуклих просторах / О.О. Карлова, В.К. Маслюченко // Український математичний журнал. — 2007. — Т. 59, № 12. — С. 1639–1646. — Бібліогр.: 14 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Доказано, что для метризуемого пространства X, совершенно нормального пространства Y и сильно σ-метризуемого топологического векторного пространства Z, имеющего исчерпывание, которое состоит из замкнутых метризуемых сепарабельных линейно связных и локально линейно связных подпространств Zm пространства Z, набор (X,Y,Z) является тройкой Лебега.
We prove that the collection (X,Y,Z) is the Lebesgue triple if X is a metrizable space, Y is a perfectly normal space, and Z is a strongly σ-metrizable topological vector space with stratification (Zm) m=1,∞, where, for every m ∊ N, Zm is a closed metrizable separable subspace of Z arcwise connected and locally arcwise connected.
|
|---|---|
| ISSN: | 1027-3190 |