On the structure of Leidniz algebras, whose subalgebras are ideals or core-free
An algebra L over a field F is said to be a Leibniz algebra (more precisely, a left Leibniz algebra), if it satisfies the Leibniz identity: [[a, b], c] = [a, [b, c]] — [b, [a, c]] for all a, b, c ∈ L. Leibniz algebras are generalizations of Lie algebras. A subalgebra S of a Leibniz algebra L is ca...
Gespeichert in:
| Veröffentlicht in: | Доповіді НАН України |
|---|---|
| Datum: | 2020 |
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Видавничий дім "Академперіодика" НАН України
2020
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/173047 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On the structure of Leidniz algebras, whose subalgebras are ideals or core-free / V.A. Chupordia, L.A. Kurdachenko, N.N. Semko // Доповіді Національної академії наук України. — 2020. — № 7. — С. 17-21. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | An algebra L over a field F is said to be a Leibniz algebra (more precisely, a left Leibniz algebra), if it satisfies
the Leibniz identity: [[a, b], c] = [a, [b, c]] — [b, [a, c]] for all a, b, c ∈ L. Leibniz algebras are generalizations of
Lie algebras. A subalgebra S of a Leibniz algebra L is called core-free, if S does not include the non-zero ideal.
We study the Leibniz algebras, whose subalgebras are either ideals or core-free.
Aлгебра L над полем F називається алгеброю Лейбніца (точніше, лівою алгеброю Лейбніца), якщо вона задовольняє таку тотожність Лейбніца: [[a, b], c] = [a, [b, c]] – [b, [a, c]] для всіх a, b, c ∈ L. Алгебри Лейбніца
являють собою узагальнення алгебр Лі. Підалгебра S алгебри Лейбніца L називається вільною від ядра,
якщо S не містить ненульових ідеалів. Розглянуто алгебри Лейбніца, усі підалгебри яких є ідеалами або
вільними від ядра.
|
|---|---|
| ISSN: | 1025-6415 |