On the structure of Leidniz algebras, whose subalgebras are ideals or core-free

An algebra L over a field F is said to be a Leibniz algebra (more precisely, a left Leibniz algebra), if it satisfies the Leibniz identity: [[a, b], c] = [a, [b, c]] — [b, [a, c]] for all a, b, c ∈ L. Leibniz algebras are generalizations of Lie algebras. A subalgebra S of a Leibniz algebra L is ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Доповіді НАН України
Datum:2020
Hauptverfasser: Chupordia, V.A., Kurdachenko, L.A., Semko, N.N.
Format: Artikel
Sprache:English
Veröffentlicht: Видавничий дім "Академперіодика" НАН України 2020
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/173047
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On the structure of Leidniz algebras, whose subalgebras are ideals or core-free / V.A. Chupordia, L.A. Kurdachenko, N.N. Semko // Доповіді Національної академії наук України. — 2020. — № 7. — С. 17-21. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:An algebra L over a field F is said to be a Leibniz algebra (more precisely, a left Leibniz algebra), if it satisfies the Leibniz identity: [[a, b], c] = [a, [b, c]] — [b, [a, c]] for all a, b, c ∈ L. Leibniz algebras are generalizations of Lie algebras. A subalgebra S of a Leibniz algebra L is called core-free, if S does not include the non-zero ideal. We study the Leibniz algebras, whose subalgebras are either ideals or core-free. Aлгебра L над полем F називається алгеброю Лейбніца (точніше, лівою алгеброю Лейбніца), якщо вона задовольняє таку тотожність Лейбніца: [[a, b], c] = [a, [b, c]] – [b, [a, c]] для всіх a, b, c ∈ L. Алгебри Лейбніца являють собою узагальнення алгебр Лі. Підалгебра S алгебри Лейбніца L називається вільною від ядра, якщо S не містить ненульових ідеалів. Розглянуто алгебри Лейбніца, усі підалгебри яких є ідеалами або вільними від ядра.
ISSN:1025-6415