Нове геометричне подання простору «станів-дій» Q-learning алгоритму в проблемі передбачення третинної структури білка

Розроблено новітнє подання простору станів та дій для алгоритму машинного навчання з підкріпленням Q-learning. Застосування Q-learning алгоритму з пропонованим поданням простору станів та дій досліджується на задачі передбачення третинної структури білків. Особливість пропонованого подання полягає в...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Кібернетика та комп’ютерні технології
Дата:2020
Автор: Чорножук, С.А.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2020
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/173152
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Нове геометричне подання простору «станів-дій» Q-learning алгоритму в проблемі передбачення третинної структури білка / С.А. Чорножук // Кібернетика та комп’ютерні технології: Зб. наук. пр. — 2020. — № 3. — С. 59-73. — Бібліогр.: 16 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Розроблено новітнє подання простору станів та дій для алгоритму машинного навчання з підкріпленням Q-learning. Застосування Q-learning алгоритму з пропонованим поданням простору станів та дій досліджується на задачі передбачення третинної структури білків. Особливість пропонованого подання полягає в урахуванні геометричних властивостей результуючого ланцюга в кубічній ґратці. Ефективність такого підходу підтверджується експериментально на широко-розповсюдженому в світі наборі тестових даних. Цель роботы. Анализ существующих подходов к представлению пространств состояний и действий для алгоритма Q-learning для задачи предсказания трехмерной структуры белков, выявление их преимуществ и недостатков, предложение нового геометрического представления пространства «состояние-действие». Дальше необходимо сравнить существующие и предлагаемые подходы, сделать выводы и описать возможные будущие шаги дальнейших исследований. The purpose of the article is to analyze existing approaches of different states and actions spaces representations for Q-learning algorithm for protein structure folding problem, reveal their advantages and disadvantages and propose the new geometric “state-space” representation. Afterwards the goal is to compare existing and the proposed approaches, make conclusions with also describing possible future steps of further research.
ISSN:2707-4501