Notch Effect on the Fatigue Behavior of a Hot Dip Galvanized Structural Steel

Исследовано влияние гальванического покрытия на усталостную прочность конструкционной стали S355. Несмотря на наличие в литературных источниках экспериментальных данных по гладким образцам из этого материала с покрытием, почти отсутствуют таковые по образцам с концентраторами напряжений. Выполнен ср...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Berto, F., Mutignani, F., Tisalvi, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2015
Назва видання:Проблемы прочности
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/173383
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Notch Effect on the Fatigue Behavior of a Hot Dip Galvanized Structural Steel / F. Berto, F. Mutignani, M. Tisalvi // Проблемы прочности. — 2015. — № 5. — С. 82-93. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-173383
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1733832025-02-09T17:03:26Z Notch Effect on the Fatigue Behavior of a Hot Dip Galvanized Structural Steel Влияние концентрации напряжений на усталостные характеристики конструкционной стали, гальванизированной методом горячего погружения (на англ.яз.) Berto, F. Mutignani, F. Tisalvi, M. Научно-технический раздел Исследовано влияние гальванического покрытия на усталостную прочность конструкционной стали S355. Несмотря на наличие в литературных источниках экспериментальных данных по гладким образцам из этого материала с покрытием, почти отсутствуют таковые по образцам с концентраторами напряжений. Выполнен сравнительный анализ образцов с центральным отверстием, подвергнутых гальванизации методом горячего погружения, и исходных образцов той же геометрии. Усталостные испытания проводились при двух постоянных значениях асимметрии цикла нагружения. Получено и проанализировано 60 новых экспериментальных данных. Досліджено вплив гальванічного покриття на втомну міцність конструкційної сталі S355. Незважаючи на те, що в літературних джерелах є експериментальні дані щодо гладких зразків із цього матеріалу з покриттям, майже відсуті дані щодо зразків із концентратором напружень. Виконано порівняльний аналіз зразків із центральним отвором, ще зазнали гальванізації методом гарячого занурення, і вихідних зразків такої ж геометрії. Випробування на втому проводились при двох постійних значеннях асиметрії циклу навантаження. Отримано і проаналізовано 60 нових експериментальних даних. 2015 Article Notch Effect on the Fatigue Behavior of a Hot Dip Galvanized Structural Steel / F. Berto, F. Mutignani, M. Tisalvi // Проблемы прочности. — 2015. — № 5. — С. 82-93. — Бібліогр.: 17 назв. — англ. 0556-171X https://nasplib.isofts.kiev.ua/handle/123456789/173383 539.421 en Проблемы прочности application/pdf Інститут проблем міцності ім. Г.С. Писаренко НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Научно-технический раздел
Научно-технический раздел
spellingShingle Научно-технический раздел
Научно-технический раздел
Berto, F.
Mutignani, F.
Tisalvi, M.
Notch Effect on the Fatigue Behavior of a Hot Dip Galvanized Structural Steel
Проблемы прочности
description Исследовано влияние гальванического покрытия на усталостную прочность конструкционной стали S355. Несмотря на наличие в литературных источниках экспериментальных данных по гладким образцам из этого материала с покрытием, почти отсутствуют таковые по образцам с концентраторами напряжений. Выполнен сравнительный анализ образцов с центральным отверстием, подвергнутых гальванизации методом горячего погружения, и исходных образцов той же геометрии. Усталостные испытания проводились при двух постоянных значениях асимметрии цикла нагружения. Получено и проанализировано 60 новых экспериментальных данных.
format Article
author Berto, F.
Mutignani, F.
Tisalvi, M.
author_facet Berto, F.
Mutignani, F.
Tisalvi, M.
author_sort Berto, F.
title Notch Effect on the Fatigue Behavior of a Hot Dip Galvanized Structural Steel
title_short Notch Effect on the Fatigue Behavior of a Hot Dip Galvanized Structural Steel
title_full Notch Effect on the Fatigue Behavior of a Hot Dip Galvanized Structural Steel
title_fullStr Notch Effect on the Fatigue Behavior of a Hot Dip Galvanized Structural Steel
title_full_unstemmed Notch Effect on the Fatigue Behavior of a Hot Dip Galvanized Structural Steel
title_sort notch effect on the fatigue behavior of a hot dip galvanized structural steel
publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України
publishDate 2015
topic_facet Научно-технический раздел
url https://nasplib.isofts.kiev.ua/handle/123456789/173383
citation_txt Notch Effect on the Fatigue Behavior of a Hot Dip Galvanized Structural Steel / F. Berto, F. Mutignani, M. Tisalvi // Проблемы прочности. — 2015. — № 5. — С. 82-93. — Бібліогр.: 17 назв. — англ.
series Проблемы прочности
work_keys_str_mv AT bertof notcheffectonthefatiguebehaviorofahotdipgalvanizedstructuralsteel
AT mutignanif notcheffectonthefatiguebehaviorofahotdipgalvanizedstructuralsteel
AT tisalvim notcheffectonthefatiguebehaviorofahotdipgalvanizedstructuralsteel
AT bertof vliâniekoncentraciinaprâženijnaustalostnyeharakteristikikonstrukcionnojstaligalʹvanizirovannojmetodomgorâčegopogruženiânaanglâz
AT mutignanif vliâniekoncentraciinaprâženijnaustalostnyeharakteristikikonstrukcionnojstaligalʹvanizirovannojmetodomgorâčegopogruženiânaanglâz
AT tisalvim vliâniekoncentraciinaprâženijnaustalostnyeharakteristikikonstrukcionnojstaligalʹvanizirovannojmetodomgorâčegopogruženiânaanglâz
first_indexed 2025-11-28T08:03:06Z
last_indexed 2025-11-28T08:03:06Z
_version_ 1850020458595876864
fulltext UDC 539.421 Notch Effect on the Fatigue Behavior of a Hot Dip Galvanized Structural Steel F. Berto, a,1 F. Mutignani, a and M. Tisalvi b a Department of Management and Engineering, University of Padua, Vicenza, Italy b Rete Ferroviaria Italiana (RFI), Roma, Italy 1 berto@gest.unipd.it ÓÄÊ 539.421 Âëèÿíèå êîíöåíòðàöèè íàïðÿæåíèé íà óñòàëîñòíûå õàðàêòåðèñòèêè êîíñòðóêöèîííîé ñòàëè, ãàëüâàíèçèðîâàííîé ìåòîäîì ãîðÿ÷åãî ïîãðóæåíèÿ Ô. Áåðòî à , Ô. Ìóòèíüÿíè à , Ì. Òèñàëâè á à Ôàêóëüòåò ìåíåäæìåíòà è èíæèíèðèíãà, Ïàäóàíñêèé óíèâåðñèòåò, Âè÷åíöà, Èòàëèÿ á Êîìïàíèÿ RFI, Ðèì, Èòàëèÿ Èññëåäîâàíî âëèÿíèå ãàëüâàíè÷åñêîãî ïîêðûòèÿ íà óñòàëîñòíóþ ïðî÷íîñòü êîíñòðóêöèîííîé ñòàëè S355. Íåñìîòðÿ íà íàëè÷èå â ëèòåðàòóðíûõ èñòî÷íèêàõ ýêñïåðèìåíòàëüíûõ äàííûõ ïî ãëàäêèì îáðàçöàì èç ýòîãî ìàòåðèàëà ñ ïîêðûòèåì, ïî÷òè îòñóòñòâóþò òàêîâûå ïî îáðàçöàì ñ êîíöåíòðàòîðàìè íàïðÿæåíèé. Âûïîëíåí ñðàâíèòåëüíûé àíàëèç îáðàçöîâ ñ öåíòðàëüíûì îòâåðñòèåì, ïîäâåðãíóòûõ ãàëüâàíèçàöèè ìåòîäîì ãîðÿ÷åãî ïîãðóæåíèÿ, è èñõîäíûõ îáðàçöîâ òîé æå ãåîìåòðèè. Óñòàëîñòíûå èñïûòàíèÿ ïðîâîäèëèñü ïðè äâóõ ïîñòîÿííûõ çíà÷åíèÿõ àñèììåòðèè öèêëà íàãðóæåíèÿ. Ïîëó÷åíî è ïðîàíàëèçèðîâàíî 60 íîâûõ ýêñïåðèìåíòàëüíûõ äàííûõ. Êëþ÷åâûå ñëîâà: îöèíêîâàííàÿ ñòàëü, ìíîãîöèêëîâàÿ óñòàëîñòü, âëèÿíèå êîíöåíòðà- öèè íàïðÿæåíèé, êîýôôèöèåíò êîíöåíòðàöèè íàïðÿæåíèé. Introduction. Hot-dip galvanizing is a surface treatment that aims to protect components from corrosion. Galvanizing is found in almost every major application and industry where steel is used. The utilities, chemical process, construction, automotive, and transportation industries, to name just a few, historically have made extensive use of galvanizing for corrosion control. Hot-dip galvanizing (HDG) has a proven and growing history of success in myriad of applications worldwide. While the monotonic behavior of steel is not greatly affected by the presence of the zinc layer, except for the yield stress, under cyclic stress the fatigue strength is usually reduced as discussed in [1] dealing with high-strength steels without any stress concentration effect or geometrical discontinuity. In [1], it was found that the fatigue strength is generally correlated to the coating thickness with a reduction of the fatigue life increasing the thickness of the zinc layer. On the other hand, other authors did not support any correlation of loss of the fatigue strength with the coating thickness [2, 3]. The effect of a galvanizing coating on the fatigue strength of unnotched ferritic steel has been extensively studied in [4] and a tool based on the Kitagawa–Takahashi diagram (see Fig. 1) has been employed for the prediction of the fatigue resistance of hot-dip galvanized steel. Bending fatigue tests were carried out on galvanized proper steels to determine whether the © F. BERTO, F. MUTIGNANI, M. TISALVI, 2015 82 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 fatigue resistance of a ferritic steel was affected by the coating. A threshold value in the coating thickness from which the fatigue strength of a ferritic steel can be reduced. It was proved that the fatigue strength behavior of the considered steel is not affected by the zinc layer if the thickness does not exceed 60 �m. Dealing with galvanized steel wires for bridges construction some interesting and recent studies have been performed in [5, 6]. A comparison between the fatigue behavior of two hot-dip galvanized steel with similar static load-bearing capability, for automotive applications has been carried out in [7, 8]. The fatigue life behavior of galvanized rear axles made of microalloyed steel for automotive application was investigated in [9]. Other important aspects tied to the galvanizing process are well discussed in [10–15]. A wide synthesis and review of applications connected with hot dip galvanized steels can be found in [16]. Although some results on fatigue tests of unnotched specimens are currently available in the literature, there only few ones on notched components. At the best of authors’ knowledge, the only complete set of data from notched specimens is due to Huhn and Valtinat [17] who carried out low- and high-cycle fatigue tests of members with holes and bearing-type connections with both punched and drilled holes, but without any preload of the fasteners. The test specimens consisted of S 235 JR G2 (formerly: RSt 37-2) steel and the loading was of simple sinus wave form, while the ratio between the lower and upper tension in the net section was +0.1. Members with holes and bearing-type connections are compared. The members with a hole were able to withstand a higher stress range �� at the same number of cycles N up to failure than the joints. A comparison between the test specimens with punched holes and those with drilled holes showed the negative influence of punching. The S–N curve for both different structural members with punched holes lied below the corresponding S–N curve for drilled holes. However, a direct comparison between uncoated and hot-dip galvanized notched steel is not available in [17] and it is not possible to understand the fatigue strength reduction due to the galvanizing process. The main aim of the present paper is to partially fill this lack considering uncoated and hot-dip galvanized specimens made of structural steel S355 weakened by a central hole. Four new fatigue sets of data are summarised in the present paper considering two values of the nominal load ratio R. The reduction of the fatigue strength due to the presence of the zinc layer is fully investigated. Fig. 1. Fatigue strength according to the Kitagawa–Takahashi diagram. ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 83 Notch Effect on the Fatigue Behavior ... 1. Fatigue Tests on Uncoated and Hot-Dip Galvanized Structural Steel S355. 1.1. Material and Experimental Procedure. Fatigue tests have been carried out on S355 structural steel. It is commonly employed in typical applications such as follows: (i) structural steel works: bridge components, components for offshore structures; (ii) power plants; (iii) mining and earth-moving equipment; (iv) load-handling equipment; (v) wind tower components. The fatigue tests were conducted on a servo-hydraulic MTS 810 test system with a load cell capacity of 250 kN. All uniaxial stress-controlled tensile fatigue tests were carried out over a range of cyclic stresses at 10 Hz. Two different load ratios, R � 0 and R ��1 (see Fig. 2), have been considered in the tests both for uncoated and hot-dip galvanized specimens for a total of four new fatigue series. 1.2. Specimen Geometry. A total of four sets of samples have been cut from a sheet: all specimens had rectangular cross section (net area equal to 300 mm2 and gross area equal to 400 mm2) and the same geometry and dimensions shown in Fig. 3. The diameter of the hole is equal to 10 mm resulting in a stress concentration factor K t net, referred to the net area equal to 2.45 and a K t gross, equal to 3.27. The specimen holes were obtained by drilling. Galvanizing of the steel specimens was carried out at about 440�C in a zinc bath keeping the specimens inside the bath for four minutes. The specimens were cleaned at room temperature to eliminate the surface scratches due to the process. The coating thickness varied between 90 and 104 �m as visible from the broken specimen after the fatigue test shown in Fig. 4. a b Fig. 2. Wave forms for each loading pattern: (a) loading at R ��1; (b) loading at R � 0. Fig. 3. Specimen geometry. 84 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 F. Berto, F. Mutignani, and M. Tisalvi 2. Results. Figures 5, 6 and 7, 8 display the results from fatigue tests at R ��1 and R � 0 of uncoated and hot-dip galvanized specimens, respectively. The stress range is plotted as a function of the cycles to failure in a double logarithmic scale. The obtained results were statistically elaborated by using a log-normal distribution. The run-out samples, over two million cycles, were not included in the statistical analysis and are marked with an arrow. In addition to the mean curve relative to a survival probability of Ps� 50%, Figs. 3–6 show the scatter band defined by lines with 10 and 90% of survival probability (Haibach’s scatter band). For uncoated specimens due to failures occurred between 106 and 2 106� cycles the scatter band is defined between 104 and 2 106� cycles while for hot dip galvanized specimens the scatter band is defined between 104 and 106 cycles. Fig. 4. SEM image of hot-dip galvanized coating on the steel substrate in a specimen after fatigue failure. Fig. 5. Fatigue behavior of bare steel at R ��1. ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 85 Notch Effect on the Fatigue Behavior ... Fig. 6. Fatigue behavior of bare steel at R � 0. Fig. 7. Fatigue behavior of hot dip galvanized steel at R ��1. Fig. 8. Fatigue behavior of hot dip galvanized steel at R � 0. 86 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 F. Berto, F. Mutignani, and M. Tisalvi The mean stress amplitude values corresponding to two million cycles, the inverse slope k value of the Wöhler curve (S–N curve) and the scatter index T (the ratio between the stress amplitudes corresponding to 10 and 90% of survival probability) are also shown. The details of the data for uncoated samples are reported in Table 1 while for hot-dip galvanized specimens a summary is reported in Table 2. The results from statistical re-analyses are summarized in Tables 3–6 for each series. T a b l e 1 Fatigue Test Results for Uncoated Specimens ��net , MPa R f , Hz Number of cycles to failure 340 240 300 280 380 380 280 300 260 260 240 340 �1 10 88,992 2600,151 (run out) 203,261 457,790 54,326 51,028 733,087 273,416 459,547 561,000 1206,041 68,311 160 240 200 320 160 240 200 220 200 240 280 180 340 180 320 180 0 10 2000,000 (run out) 164,435 371,772 44,053 2800,500 (run out) 318,524 278,246 279,556 387,287 153,910 97,416 780,039 35,420 967,055 47,741 391,000 T a b l e 2 Fatigue Test Results for Hot Dip Galvanized Specimens ��net , MPa R f , Hz Number of cycles to failure 1 2 3 4 300 240 �1 10 91,942 504,622 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 87 Notch Effect on the Fatigue Behavior ... A direct comparison between uncoated and hot dip galvanized specimens at R ��1 and 0 is shown in Figs. 9 and 10, respectively. The solid lines reported in the figures correspond to a probability of survival of 50%. Continued Table 2 1 2 3 4 300 180 340 240 340 200 200 280 260 180 �1 10 104,500 1554,379 62,500 314,623 57,208 775,999 776,511 138,444 203,443 2400,000 (run out) 160 240 160 320 320 120 120 240 140 200 180 200 180 280 280 0 10 501,500 95,849 357,000 27,400 32,000 2300,000 (run out) 2400,000 (run out) 80,070 2000,000 (run out) 157,000 272,000 121,000 296,154 57,639 50,330 T a b l e 3 Statistical Re-Analysis of Data on Hot Dip Galvanized Specimens at R � 0 k 3.74 T� (10–90%) 1.208 Ps, % N , cycles ��net , MPa 10 104 472 50 429 90 391 10 106 138 50 125 90 114 88 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 F. Berto, F. Mutignani, and M. Tisalvi T a b l e 4 Statistical Re-Analysis of Data on Hot Dip Galvanized Specimens at R ��1 k 5.14 T� (10–90%) 1.147 Ps, % N , cycles ��net , MPa 10 104 509 50 476 90 444 10 106 208 50 194 90 181 T a b l e 5 Statistical Re-Analysis of Data on Uncoated Specimens at R � 0 k 4.46 T� (10–90%) 1.299 Ps, % N , cycles ��net , MPa 10 104 521 50 457 90 401 10 2 106� 159 50 139 90 122 T a b l e 6 Statistical Re-Analysis of Data on Uncoated Specimens at R ��1 k 6.97 T� (10–90%) 1.206 Ps, % N , cycles ��net , MPa 10 104 521 50 474 90 431 10 2 106� 243 50 222 90 202 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 89 Notch Effect on the Fatigue Behavior ... Table 7 lists the value referred to a probability of survival of 90% at 106 and 2 106� cycles, respectively, allowing a direct quantification of the fatigue strength reduction factor due to the galvanizing process. From the comparison it can be noted that the stress range at 2 106� cycles decreases, passing from uncoated to HDG specimens, as expected, with a ratio variable between 1.23 and 1.28, for R ��1, and between 1.25 and 1.28 for R � 0. A slight decrement of the inverse slope k from bare to galvanized specimens for both load ratios can be also observed. It is worth noting that the stress range results are comparable and higher than the values taken from Eurocode 3 for the detail category ‘structural element with holes subject to bending and axial forces’ which belongs to the class �� � 90 MPa and is referred to uncoated material. This value is comparable with the stress range �� � 95/1.1� 86.6 MPa (Ps� 97.7%) found here dealing with hot-dip galvanized specimens weakened by a hole and tested at R � 0, see Table 7. The employed coefficient 1.1 allows Fig. 9. Comparison of fatigue behavior of uncoated and hot dip galvanized steel at R ��1. Fig. 10. Comparison of fatigue behavior of uncoated and hot dip galvanized steel at R � 0. 90 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 F. Berto, F. Mutignani, and M. Tisalvi one to convert the probability of survival of 90% to a probability of survival equal to 97.7%. The results reported in the present paper are then very promising for possible applications to bolted and welded connections which will be the topic of future contributions. Finally, a direct comparison has been carried out between the present results obtained at R � 0 and those by Huhn and Valtinat [17] referred to a nominal load ratio R � 0.1. As seen from Fig. 11, there is a very good correspondence between the present results and those previously obtained in [17] and, in particular, with those obtained from specimens with drilled holes. Conclusions. The effect of a galvanizing coating on the fatigue strength of S355 structural steel has been investigated. A direct comparison is carried out between hot dip galvanized specimens weakened by a central hole and untreated specimens characterized by the same geometry. Two different values of the nominal load ratio are considered with T a b l e 7 Comparison of Uncoated Non-Galvanized and Galvanized Specimens (Ps � 50%) Characteristic R � 0 R ��1 N � �2 106 , cycles N �106 , cycles k N � �2 106 , cycles N �106 , cycles k Uncoated ��, MPa 122 143 4.46 202 223 6.97 HDG ��, MPa 95 114 3.74 158 181 5.14 Reduction ratio due to galvanizing 1.28 1.25 1.28 1.23 Fig. 11. Direct comparison between the present results at R � 0 and the fatigue data by [17] for R � 0.1. ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 91 Notch Effect on the Fatigue Behavior ... R � 0 and�1, respectively. Almost 60 new experimental data are summarized in the present contribution. The degree of penalization due to hot dip galvanization process is about 25% in terms of fatigue strength for the specimens considered in the present investigation and it is almost independent on the load ratio R. Even if this penalization is not negligible, the fatigue strength of the hot dip galvanized specimens is comparable and also higher than the reference value reported in Eurocode 3 for structural elements with holes subject to bending and axial forces. The present results are also in very good agreement with a previous study by Huhn and Valtinat [17], which refer both to drilled and punched holes in hot dip galvanized specimens. Ð å ç þ ì å Äîñë³äæåíî âïëèâ ãàëüâàí³÷íîãî ïîêðèòòÿ íà âòîìíó ì³öí³ñòü êîíñòðóêö³éíî¿ ñòàë³ S355. Íåçâàæàþ÷è íà òå, ùî â ë³òåðàòóðíèõ äæåðåëàõ º åêñïåðèìåíòàëüí³ äàí³ ùîäî ãëàäêèõ çðàçê³â ³ç öüîãî ìàòåð³àëó ç ïîêðèòòÿì, ìàéæå â³äñóò³ äàí³ ùîäî çðàçê³â ³ç êîíöåíòðàòîðîì íàïðóæåíü. Âèêîíàíî ïîð³âíÿëüíèé àíàë³ç çðàçê³â ³ç öåíòðàëüíèì îòâîðîì, ùå çàçíàëè ãàëüâàí³çàö³¿ ìåòîäîì ãàðÿ÷îãî çàíóðåííÿ, ³ âèõ³äíèõ çðàçê³â òàêî¿ æ ãåîìåòð³¿. Âèïðîáóâàííÿ íà âòîìó ïðîâîäèëèñü ïðè äâîõ ïîñò³éíèõ çíà÷åí- íÿõ àñèìåò𳿠öèêëó íàâàíòàæåííÿ. Îòðèìàíî ³ ïðîàíàë³çîâàíî 60 íîâèõ åêñïåðè- ìåíòàëüíèõ äàíèõ. 1. Y. Bergengren and A. Melander, “An experimental and theoretical study of the fatigue properties of hot dip-galvanized high strength sheet steel,” Int. J. Fatigue, 14, 154–162 (1992). 2. T. Nilsson, G. Engberg, and H. Trogen, “Fatigue properties of hot-dip galvanized steels,” Scand. J. Metallurgy, 18, 166–175 (1989). 3. R. S. Browne, E. N. Gregory, and S. Harper, “The effects of galvanizing on the fatigue strengths of steels and welded joints,” in: Proc. of Seminar on Galvanizing of Silicon Containing Steels, ILZRO Publishers, Liege (1975), pp. 246–264. 4. J. B. Vogt, O. Boussac, and J. Foct, “Prediction of fatigue resistance of a hot-dip galvanized steel,” Fatigue Fract. Eng. Mater. Struct., 23, 33–39 (2000). 5. J. H. Jiang, A. B. Ma, W. F. Weng, et al., “Corrosion fatigue performance of pre-split steel wires for high strength bridge cables,” Fatigue Fract. Eng. Mater. Struct., 32, 769–779 (2009). 6. W. J. Yang, P. Yang, X. M. Li, and W. L. Feng, “Influence of tensile stress on corrosion behaviour of high-strength galvanized steel bridge wires in simulated acid rain,” Mater. Corros., 63, 401–407 (2012). 7. K. Berchem and M. G. Hocking, “The influence of pre-straining on the corrosion fatigue performance of two hot-dip galvanised steels,” Corros. Sci., 48, 4094–4112 (2006). 8. K. Berchem and M. G. Hocking, “The influence of pre-straining on the high-cycle fatigue performance of two hot-dip galvanised car body steels,” Mater. Character., 58, 593–602 (2006). 9. A. Dimatteo, G. Lovicu, M. DeSanctis, et al., “Influence of galvanizing process on fatigue resistance of microalloyed steels,” in: Convegno Nazionale IGF XXI, Cassino, Italy (2011), pp. 283–291. 10. P. De la Cruz and T. Ericsson, “Influence of hot dip galvanizing on fatigue and corrosion fatigue resistance of a B–Mn steel,” Scand. J. Metallurgy, 26, 145–152 (1997). 92 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 F. Berto, F. Mutignani, and M. Tisalvi 11. B. Mintz, “Hot dip galvanising of transformation induced plasticity and other intercritically annealed steels,” Int. Mater. Rev., 46, 169–197 (2001). 12. G. Reumont, J. B. Vogt, A. Iost, and J. Foct, “The effects of an Fe–Zn intermetallic- containing coating on the stress corrosion cracking behavior of a hot-dip galvanized steel,” Surf. Coat. Technol., 139, 265–271 (2001). 13. C. Ma, D. L. Chen, S. D. Bhole, et al., “Microstructure and fracture characteristics of spot-welded DP600 steel,” Mater. Sci. Eng. A, 485, 334–346, (2008). 14. M. N. James, “Designing against LMAC in galvanised steel structures,” Eng. Fail. Anal., 16, 1051–1061 (2009). 15. S. Aden-Ali, A. Chamat, J. Gilgert, et al., “On the degradation the endurance of silicon-rich TRIP800 steel after hot-dip galvanization,” Eng. Fail. Anal., 16, 2009– 2019 (2009). 16. P. Maass and P. Peissker, Handbook of Hot-Dip Galvanization, Wiley-VCH, Weinheim (2011). 17. H. Huhn and G. Valtinat, “Bolted connections with hot dip galvanized steel members with punched holes,” in: Connections in Steel Structures, Vol. 5, Amsterdam (2004), pp. 304–308. Received 09. 04. 2015 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 93 Notch Effect on the Fatigue Behavior ...