Notch Effect on the Fatigue Behavior of a Hot Dip Galvanized Structural Steel
Исследовано влияние гальванического покрытия на усталостную прочность конструкционной стали S355. Несмотря на наличие в литературных источниках экспериментальных данных по гладким образцам из этого материала с покрытием, почти отсутствуют таковые по образцам с концентраторами напряжений. Выполнен ср...
Збережено в:
| Дата: | 2015 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут проблем міцності ім. Г.С. Писаренко НАН України
2015
|
| Назва видання: | Проблемы прочности |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/173383 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Notch Effect on the Fatigue Behavior of a Hot Dip Galvanized Structural Steel / F. Berto, F. Mutignani, M. Tisalvi // Проблемы прочности. — 2015. — № 5. — С. 82-93. — Бібліогр.: 17 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-173383 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1733832025-02-09T17:03:26Z Notch Effect on the Fatigue Behavior of a Hot Dip Galvanized Structural Steel Влияние концентрации напряжений на усталостные характеристики конструкционной стали, гальванизированной методом горячего погружения (на англ.яз.) Berto, F. Mutignani, F. Tisalvi, M. Научно-технический раздел Исследовано влияние гальванического покрытия на усталостную прочность конструкционной стали S355. Несмотря на наличие в литературных источниках экспериментальных данных по гладким образцам из этого материала с покрытием, почти отсутствуют таковые по образцам с концентраторами напряжений. Выполнен сравнительный анализ образцов с центральным отверстием, подвергнутых гальванизации методом горячего погружения, и исходных образцов той же геометрии. Усталостные испытания проводились при двух постоянных значениях асимметрии цикла нагружения. Получено и проанализировано 60 новых экспериментальных данных. Досліджено вплив гальванічного покриття на втомну міцність конструкційної сталі S355. Незважаючи на те, що в літературних джерелах є експериментальні дані щодо гладких зразків із цього матеріалу з покриттям, майже відсуті дані щодо зразків із концентратором напружень. Виконано порівняльний аналіз зразків із центральним отвором, ще зазнали гальванізації методом гарячого занурення, і вихідних зразків такої ж геометрії. Випробування на втому проводились при двох постійних значеннях асиметрії циклу навантаження. Отримано і проаналізовано 60 нових експериментальних даних. 2015 Article Notch Effect on the Fatigue Behavior of a Hot Dip Galvanized Structural Steel / F. Berto, F. Mutignani, M. Tisalvi // Проблемы прочности. — 2015. — № 5. — С. 82-93. — Бібліогр.: 17 назв. — англ. 0556-171X https://nasplib.isofts.kiev.ua/handle/123456789/173383 539.421 en Проблемы прочности application/pdf Інститут проблем міцності ім. Г.С. Писаренко НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Научно-технический раздел Научно-технический раздел |
| spellingShingle |
Научно-технический раздел Научно-технический раздел Berto, F. Mutignani, F. Tisalvi, M. Notch Effect on the Fatigue Behavior of a Hot Dip Galvanized Structural Steel Проблемы прочности |
| description |
Исследовано влияние гальванического покрытия на усталостную прочность конструкционной стали S355. Несмотря на наличие в литературных источниках экспериментальных данных по гладким образцам из этого материала с покрытием, почти отсутствуют таковые по образцам с концентраторами напряжений. Выполнен сравнительный анализ образцов с центральным отверстием, подвергнутых гальванизации методом горячего погружения, и исходных образцов той же геометрии. Усталостные испытания проводились при двух постоянных значениях асимметрии цикла нагружения. Получено и проанализировано 60 новых экспериментальных данных. |
| format |
Article |
| author |
Berto, F. Mutignani, F. Tisalvi, M. |
| author_facet |
Berto, F. Mutignani, F. Tisalvi, M. |
| author_sort |
Berto, F. |
| title |
Notch Effect on the Fatigue Behavior of a Hot Dip Galvanized Structural Steel |
| title_short |
Notch Effect on the Fatigue Behavior of a Hot Dip Galvanized Structural Steel |
| title_full |
Notch Effect on the Fatigue Behavior of a Hot Dip Galvanized Structural Steel |
| title_fullStr |
Notch Effect on the Fatigue Behavior of a Hot Dip Galvanized Structural Steel |
| title_full_unstemmed |
Notch Effect on the Fatigue Behavior of a Hot Dip Galvanized Structural Steel |
| title_sort |
notch effect on the fatigue behavior of a hot dip galvanized structural steel |
| publisher |
Інститут проблем міцності ім. Г.С. Писаренко НАН України |
| publishDate |
2015 |
| topic_facet |
Научно-технический раздел |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/173383 |
| citation_txt |
Notch Effect on the Fatigue Behavior of a Hot Dip Galvanized Structural Steel / F. Berto, F. Mutignani, M. Tisalvi // Проблемы прочности. — 2015. — № 5. — С. 82-93. — Бібліогр.: 17 назв. — англ. |
| series |
Проблемы прочности |
| work_keys_str_mv |
AT bertof notcheffectonthefatiguebehaviorofahotdipgalvanizedstructuralsteel AT mutignanif notcheffectonthefatiguebehaviorofahotdipgalvanizedstructuralsteel AT tisalvim notcheffectonthefatiguebehaviorofahotdipgalvanizedstructuralsteel AT bertof vliâniekoncentraciinaprâženijnaustalostnyeharakteristikikonstrukcionnojstaligalʹvanizirovannojmetodomgorâčegopogruženiânaanglâz AT mutignanif vliâniekoncentraciinaprâženijnaustalostnyeharakteristikikonstrukcionnojstaligalʹvanizirovannojmetodomgorâčegopogruženiânaanglâz AT tisalvim vliâniekoncentraciinaprâženijnaustalostnyeharakteristikikonstrukcionnojstaligalʹvanizirovannojmetodomgorâčegopogruženiânaanglâz |
| first_indexed |
2025-11-28T08:03:06Z |
| last_indexed |
2025-11-28T08:03:06Z |
| _version_ |
1850020458595876864 |
| fulltext |
UDC 539.421
Notch Effect on the Fatigue Behavior of a Hot Dip Galvanized Structural Steel
F. Berto,
a,1
F. Mutignani,
a
and M. Tisalvi
b
a Department of Management and Engineering, University of Padua, Vicenza, Italy
b Rete Ferroviaria Italiana (RFI), Roma, Italy
1 berto@gest.unipd.it
ÓÄÊ 539.421
Âëèÿíèå êîíöåíòðàöèè íàïðÿæåíèé íà óñòàëîñòíûå õàðàêòåðèñòèêè
êîíñòðóêöèîííîé ñòàëè, ãàëüâàíèçèðîâàííîé ìåòîäîì ãîðÿ÷åãî
ïîãðóæåíèÿ
Ô. Áåðòî
à
, Ô. Ìóòèíüÿíè
à
, Ì. Òèñàëâè
á
à Ôàêóëüòåò ìåíåäæìåíòà è èíæèíèðèíãà, Ïàäóàíñêèé óíèâåðñèòåò, Âè÷åíöà, Èòàëèÿ
á Êîìïàíèÿ RFI, Ðèì, Èòàëèÿ
Èññëåäîâàíî âëèÿíèå ãàëüâàíè÷åñêîãî ïîêðûòèÿ íà óñòàëîñòíóþ ïðî÷íîñòü êîíñòðóêöèîííîé
ñòàëè S355. Íåñìîòðÿ íà íàëè÷èå â ëèòåðàòóðíûõ èñòî÷íèêàõ ýêñïåðèìåíòàëüíûõ äàííûõ ïî
ãëàäêèì îáðàçöàì èç ýòîãî ìàòåðèàëà ñ ïîêðûòèåì, ïî÷òè îòñóòñòâóþò òàêîâûå ïî
îáðàçöàì ñ êîíöåíòðàòîðàìè íàïðÿæåíèé. Âûïîëíåí ñðàâíèòåëüíûé àíàëèç îáðàçöîâ ñ
öåíòðàëüíûì îòâåðñòèåì, ïîäâåðãíóòûõ ãàëüâàíèçàöèè ìåòîäîì ãîðÿ÷åãî ïîãðóæåíèÿ, è
èñõîäíûõ îáðàçöîâ òîé æå ãåîìåòðèè. Óñòàëîñòíûå èñïûòàíèÿ ïðîâîäèëèñü ïðè äâóõ
ïîñòîÿííûõ çíà÷åíèÿõ àñèììåòðèè öèêëà íàãðóæåíèÿ. Ïîëó÷åíî è ïðîàíàëèçèðîâàíî 60 íîâûõ
ýêñïåðèìåíòàëüíûõ äàííûõ.
Êëþ÷åâûå ñëîâà: îöèíêîâàííàÿ ñòàëü, ìíîãîöèêëîâàÿ óñòàëîñòü, âëèÿíèå êîíöåíòðà-
öèè íàïðÿæåíèé, êîýôôèöèåíò êîíöåíòðàöèè íàïðÿæåíèé.
Introduction. Hot-dip galvanizing is a surface treatment that aims to protect
components from corrosion. Galvanizing is found in almost every major application and
industry where steel is used. The utilities, chemical process, construction, automotive, and
transportation industries, to name just a few, historically have made extensive use of
galvanizing for corrosion control. Hot-dip galvanizing (HDG) has a proven and growing
history of success in myriad of applications worldwide.
While the monotonic behavior of steel is not greatly affected by the presence of the
zinc layer, except for the yield stress, under cyclic stress the fatigue strength is usually
reduced as discussed in [1] dealing with high-strength steels without any stress
concentration effect or geometrical discontinuity. In [1], it was found that the fatigue
strength is generally correlated to the coating thickness with a reduction of the fatigue life
increasing the thickness of the zinc layer. On the other hand, other authors did not support
any correlation of loss of the fatigue strength with the coating thickness [2, 3]. The effect of
a galvanizing coating on the fatigue strength of unnotched ferritic steel has been
extensively studied in [4] and a tool based on the Kitagawa–Takahashi diagram (see Fig. 1)
has been employed for the prediction of the fatigue resistance of hot-dip galvanized steel.
Bending fatigue tests were carried out on galvanized proper steels to determine whether the
© F. BERTO, F. MUTIGNANI, M. TISALVI, 2015
82 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5
fatigue resistance of a ferritic steel was affected by the coating. A threshold value in the
coating thickness from which the fatigue strength of a ferritic steel can be reduced. It was
proved that the fatigue strength behavior of the considered steel is not affected by the zinc
layer if the thickness does not exceed 60 �m. Dealing with galvanized steel wires for
bridges construction some interesting and recent studies have been performed in [5, 6]. A
comparison between the fatigue behavior of two hot-dip galvanized steel with similar static
load-bearing capability, for automotive applications has been carried out in [7, 8]. The
fatigue life behavior of galvanized rear axles made of microalloyed steel for automotive
application was investigated in [9]. Other important aspects tied to the galvanizing process
are well discussed in [10–15]. A wide synthesis and review of applications connected with
hot dip galvanized steels can be found in [16].
Although some results on fatigue tests of unnotched specimens are currently available
in the literature, there only few ones on notched components. At the best of authors’
knowledge, the only complete set of data from notched specimens is due to Huhn and
Valtinat [17] who carried out low- and high-cycle fatigue tests of members with holes and
bearing-type connections with both punched and drilled holes, but without any preload of
the fasteners. The test specimens consisted of S 235 JR G2 (formerly: RSt 37-2) steel and
the loading was of simple sinus wave form, while the ratio between the lower and upper
tension in the net section was +0.1. Members with holes and bearing-type connections are
compared. The members with a hole were able to withstand a higher stress range �� at the
same number of cycles N up to failure than the joints. A comparison between the test
specimens with punched holes and those with drilled holes showed the negative influence
of punching. The S–N curve for both different structural members with punched holes lied
below the corresponding S–N curve for drilled holes. However, a direct comparison
between uncoated and hot-dip galvanized notched steel is not available in [17] and it is not
possible to understand the fatigue strength reduction due to the galvanizing process. The
main aim of the present paper is to partially fill this lack considering uncoated and hot-dip
galvanized specimens made of structural steel S355 weakened by a central hole. Four new
fatigue sets of data are summarised in the present paper considering two values of the
nominal load ratio R. The reduction of the fatigue strength due to the presence of the zinc
layer is fully investigated.
Fig. 1. Fatigue strength according to the Kitagawa–Takahashi diagram.
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 83
Notch Effect on the Fatigue Behavior ...
1. Fatigue Tests on Uncoated and Hot-Dip Galvanized Structural Steel S355.
1.1. Material and Experimental Procedure. Fatigue tests have been carried out on
S355 structural steel. It is commonly employed in typical applications such as follows:
(i) structural steel works: bridge components, components for offshore structures;
(ii) power plants;
(iii) mining and earth-moving equipment;
(iv) load-handling equipment;
(v) wind tower components.
The fatigue tests were conducted on a servo-hydraulic MTS 810 test system with a
load cell capacity of 250 kN. All uniaxial stress-controlled tensile fatigue tests were carried
out over a range of cyclic stresses at 10 Hz. Two different load ratios, R � 0 and R ��1
(see Fig. 2), have been considered in the tests both for uncoated and hot-dip galvanized
specimens for a total of four new fatigue series.
1.2. Specimen Geometry. A total of four sets of samples have been cut from a sheet:
all specimens had rectangular cross section (net area equal to 300 mm2 and gross area equal
to 400 mm2) and the same geometry and dimensions shown in Fig. 3. The diameter of the
hole is equal to 10 mm resulting in a stress concentration factor K t net, referred to the net
area equal to 2.45 and a K t gross, equal to 3.27. The specimen holes were obtained by
drilling. Galvanizing of the steel specimens was carried out at about 440�C in a zinc bath
keeping the specimens inside the bath for four minutes. The specimens were cleaned at
room temperature to eliminate the surface scratches due to the process. The coating
thickness varied between 90 and 104 �m as visible from the broken specimen after the
fatigue test shown in Fig. 4.
a b
Fig. 2. Wave forms for each loading pattern: (a) loading at R ��1; (b) loading at R � 0.
Fig. 3. Specimen geometry.
84 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5
F. Berto, F. Mutignani, and M. Tisalvi
2. Results. Figures 5, 6 and 7, 8 display the results from fatigue tests at R ��1 and
R � 0 of uncoated and hot-dip galvanized specimens, respectively. The stress range is
plotted as a function of the cycles to failure in a double logarithmic scale. The obtained
results were statistically elaborated by using a log-normal distribution. The run-out
samples, over two million cycles, were not included in the statistical analysis and are
marked with an arrow. In addition to the mean curve relative to a survival probability of
Ps� 50%, Figs. 3–6 show the scatter band defined by lines with 10 and 90% of survival
probability (Haibach’s scatter band). For uncoated specimens due to failures occurred
between 106 and 2 106� cycles the scatter band is defined between 104 and 2 106� cycles
while for hot dip galvanized specimens the scatter band is defined between 104 and 106
cycles.
Fig. 4. SEM image of hot-dip galvanized coating on the steel substrate in a specimen after fatigue
failure.
Fig. 5. Fatigue behavior of bare steel at R ��1.
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 85
Notch Effect on the Fatigue Behavior ...
Fig. 6. Fatigue behavior of bare steel at R � 0.
Fig. 7. Fatigue behavior of hot dip galvanized steel at R ��1.
Fig. 8. Fatigue behavior of hot dip galvanized steel at R � 0.
86 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5
F. Berto, F. Mutignani, and M. Tisalvi
The mean stress amplitude values corresponding to two million cycles, the inverse
slope k value of the Wöhler curve (S–N curve) and the scatter index T (the ratio between
the stress amplitudes corresponding to 10 and 90% of survival probability) are also shown.
The details of the data for uncoated samples are reported in Table 1 while for hot-dip
galvanized specimens a summary is reported in Table 2. The results from statistical
re-analyses are summarized in Tables 3–6 for each series.
T a b l e 1
Fatigue Test Results for Uncoated Specimens
��net , MPa R f , Hz Number of cycles
to failure
340
240
300
280
380
380
280
300
260
260
240
340
�1 10 88,992
2600,151 (run out)
203,261
457,790
54,326
51,028
733,087
273,416
459,547
561,000
1206,041
68,311
160
240
200
320
160
240
200
220
200
240
280
180
340
180
320
180
0 10 2000,000 (run out)
164,435
371,772
44,053
2800,500 (run out)
318,524
278,246
279,556
387,287
153,910
97,416
780,039
35,420
967,055
47,741
391,000
T a b l e 2
Fatigue Test Results for Hot Dip Galvanized Specimens
��net , MPa R f , Hz Number of cycles
to failure
1 2 3 4
300
240
�1 10 91,942
504,622
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 87
Notch Effect on the Fatigue Behavior ...
A direct comparison between uncoated and hot dip galvanized specimens at R ��1
and 0 is shown in Figs. 9 and 10, respectively. The solid lines reported in the figures
correspond to a probability of survival of 50%.
Continued Table 2
1 2 3 4
300
180
340
240
340
200
200
280
260
180
�1 10 104,500
1554,379
62,500
314,623
57,208
775,999
776,511
138,444
203,443
2400,000 (run out)
160
240
160
320
320
120
120
240
140
200
180
200
180
280
280
0 10 501,500
95,849
357,000
27,400
32,000
2300,000 (run out)
2400,000 (run out)
80,070
2000,000 (run out)
157,000
272,000
121,000
296,154
57,639
50,330
T a b l e 3
Statistical Re-Analysis of Data on Hot Dip Galvanized Specimens at R � 0
k 3.74
T� (10–90%) 1.208
Ps, % N , cycles ��net , MPa
10 104 472
50 429
90 391
10 106 138
50 125
90 114
88 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5
F. Berto, F. Mutignani, and M. Tisalvi
T a b l e 4
Statistical Re-Analysis of Data on Hot Dip Galvanized Specimens at R ��1
k 5.14
T� (10–90%) 1.147
Ps, % N , cycles ��net , MPa
10 104 509
50 476
90 444
10 106 208
50 194
90 181
T a b l e 5
Statistical Re-Analysis of Data on Uncoated Specimens at R � 0
k 4.46
T� (10–90%) 1.299
Ps, % N , cycles ��net , MPa
10 104 521
50 457
90 401
10 2 106� 159
50 139
90 122
T a b l e 6
Statistical Re-Analysis of Data on Uncoated Specimens at R ��1
k 6.97
T� (10–90%) 1.206
Ps, % N , cycles ��net , MPa
10 104 521
50 474
90 431
10 2 106� 243
50 222
90 202
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 89
Notch Effect on the Fatigue Behavior ...
Table 7 lists the value referred to a probability of survival of 90% at 106 and 2 106�
cycles, respectively, allowing a direct quantification of the fatigue strength reduction factor
due to the galvanizing process. From the comparison it can be noted that the stress range at
2 106� cycles decreases, passing from uncoated to HDG specimens, as expected, with a ratio
variable between 1.23 and 1.28, for R ��1, and between 1.25 and 1.28 for R � 0. A slight
decrement of the inverse slope k from bare to galvanized specimens for both load ratios
can be also observed. It is worth noting that the stress range results are comparable and
higher than the values taken from Eurocode 3 for the detail category ‘structural element
with holes subject to bending and axial forces’ which belongs to the class �� � 90 MPa
and is referred to uncoated material. This value is comparable with the stress range
�� � 95/1.1� 86.6 MPa (Ps� 97.7%) found here dealing with hot-dip galvanized specimens
weakened by a hole and tested at R � 0, see Table 7. The employed coefficient 1.1 allows
Fig. 9. Comparison of fatigue behavior of uncoated and hot dip galvanized steel at R ��1.
Fig. 10. Comparison of fatigue behavior of uncoated and hot dip galvanized steel at R � 0.
90 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5
F. Berto, F. Mutignani, and M. Tisalvi
one to convert the probability of survival of 90% to a probability of survival equal to
97.7%.
The results reported in the present paper are then very promising for possible
applications to bolted and welded connections which will be the topic of future
contributions.
Finally, a direct comparison has been carried out between the present results obtained
at R � 0 and those by Huhn and Valtinat [17] referred to a nominal load ratio R � 0.1. As
seen from Fig. 11, there is a very good correspondence between the present results and
those previously obtained in [17] and, in particular, with those obtained from specimens
with drilled holes.
Conclusions. The effect of a galvanizing coating on the fatigue strength of S355
structural steel has been investigated. A direct comparison is carried out between hot dip
galvanized specimens weakened by a central hole and untreated specimens characterized by
the same geometry. Two different values of the nominal load ratio are considered with
T a b l e 7
Comparison of Uncoated Non-Galvanized and Galvanized Specimens (Ps � 50%)
Characteristic R � 0 R ��1
N � �2 106 ,
cycles
N �106 ,
cycles
k N � �2 106 ,
cycles
N �106 ,
cycles
k
Uncoated ��, MPa 122 143 4.46 202 223 6.97
HDG ��, MPa 95 114 3.74 158 181 5.14
Reduction ratio
due to galvanizing
1.28 1.25 1.28 1.23
Fig. 11. Direct comparison between the present results at R � 0 and the fatigue data by [17] for
R � 0.1.
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 91
Notch Effect on the Fatigue Behavior ...
R � 0 and�1, respectively. Almost 60 new experimental data are summarized in the present
contribution. The degree of penalization due to hot dip galvanization process is about 25%
in terms of fatigue strength for the specimens considered in the present investigation and it
is almost independent on the load ratio R. Even if this penalization is not negligible, the
fatigue strength of the hot dip galvanized specimens is comparable and also higher than the
reference value reported in Eurocode 3 for structural elements with holes subject to
bending and axial forces. The present results are also in very good agreement with a
previous study by Huhn and Valtinat [17], which refer both to drilled and punched holes in
hot dip galvanized specimens.
Ð å ç þ ì å
Äîñë³äæåíî âïëèâ ãàëüâàí³÷íîãî ïîêðèòòÿ íà âòîìíó ì³öí³ñòü êîíñòðóêö³éíî¿ ñòàë³
S355. Íåçâàæàþ÷è íà òå, ùî â ë³òåðàòóðíèõ äæåðåëàõ º åêñïåðèìåíòàëüí³ äàí³ ùîäî
ãëàäêèõ çðàçê³â ³ç öüîãî ìàòåð³àëó ç ïîêðèòòÿì, ìàéæå â³äñóò³ äàí³ ùîäî çðàçê³â ³ç
êîíöåíòðàòîðîì íàïðóæåíü. Âèêîíàíî ïîð³âíÿëüíèé àíàë³ç çðàçê³â ³ç öåíòðàëüíèì
îòâîðîì, ùå çàçíàëè ãàëüâàí³çàö³¿ ìåòîäîì ãàðÿ÷îãî çàíóðåííÿ, ³ âèõ³äíèõ çðàçê³â
òàêî¿ æ ãåîìåòð³¿. Âèïðîáóâàííÿ íà âòîìó ïðîâîäèëèñü ïðè äâîõ ïîñò³éíèõ çíà÷åí-
íÿõ àñèìåò𳿠öèêëó íàâàíòàæåííÿ. Îòðèìàíî ³ ïðîàíàë³çîâàíî 60 íîâèõ åêñïåðè-
ìåíòàëüíèõ äàíèõ.
1. Y. Bergengren and A. Melander, “An experimental and theoretical study of the
fatigue properties of hot dip-galvanized high strength sheet steel,” Int. J. Fatigue, 14,
154–162 (1992).
2. T. Nilsson, G. Engberg, and H. Trogen, “Fatigue properties of hot-dip galvanized
steels,” Scand. J. Metallurgy, 18, 166–175 (1989).
3. R. S. Browne, E. N. Gregory, and S. Harper, “The effects of galvanizing on the
fatigue strengths of steels and welded joints,” in: Proc. of Seminar on Galvanizing of
Silicon Containing Steels, ILZRO Publishers, Liege (1975), pp. 246–264.
4. J. B. Vogt, O. Boussac, and J. Foct, “Prediction of fatigue resistance of a hot-dip
galvanized steel,” Fatigue Fract. Eng. Mater. Struct., 23, 33–39 (2000).
5. J. H. Jiang, A. B. Ma, W. F. Weng, et al., “Corrosion fatigue performance of pre-split
steel wires for high strength bridge cables,” Fatigue Fract. Eng. Mater. Struct., 32,
769–779 (2009).
6. W. J. Yang, P. Yang, X. M. Li, and W. L. Feng, “Influence of tensile stress on
corrosion behaviour of high-strength galvanized steel bridge wires in simulated acid
rain,” Mater. Corros., 63, 401–407 (2012).
7. K. Berchem and M. G. Hocking, “The influence of pre-straining on the corrosion
fatigue performance of two hot-dip galvanised steels,” Corros. Sci., 48, 4094–4112
(2006).
8. K. Berchem and M. G. Hocking, “The influence of pre-straining on the high-cycle
fatigue performance of two hot-dip galvanised car body steels,” Mater. Character.,
58, 593–602 (2006).
9. A. Dimatteo, G. Lovicu, M. DeSanctis, et al., “Influence of galvanizing process on
fatigue resistance of microalloyed steels,” in: Convegno Nazionale IGF XXI, Cassino,
Italy (2011), pp. 283–291.
10. P. De la Cruz and T. Ericsson, “Influence of hot dip galvanizing on fatigue and
corrosion fatigue resistance of a B–Mn steel,” Scand. J. Metallurgy, 26, 145–152
(1997).
92 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5
F. Berto, F. Mutignani, and M. Tisalvi
11. B. Mintz, “Hot dip galvanising of transformation induced plasticity and other
intercritically annealed steels,” Int. Mater. Rev., 46, 169–197 (2001).
12. G. Reumont, J. B. Vogt, A. Iost, and J. Foct, “The effects of an Fe–Zn intermetallic-
containing coating on the stress corrosion cracking behavior of a hot-dip galvanized
steel,” Surf. Coat. Technol., 139, 265–271 (2001).
13. C. Ma, D. L. Chen, S. D. Bhole, et al., “Microstructure and fracture characteristics of
spot-welded DP600 steel,” Mater. Sci. Eng. A, 485, 334–346, (2008).
14. M. N. James, “Designing against LMAC in galvanised steel structures,” Eng. Fail.
Anal., 16, 1051–1061 (2009).
15. S. Aden-Ali, A. Chamat, J. Gilgert, et al., “On the degradation the endurance of
silicon-rich TRIP800 steel after hot-dip galvanization,” Eng. Fail. Anal., 16, 2009–
2019 (2009).
16. P. Maass and P. Peissker, Handbook of Hot-Dip Galvanization, Wiley-VCH, Weinheim
(2011).
17. H. Huhn and G. Valtinat, “Bolted connections with hot dip galvanized steel members
with punched holes,” in: Connections in Steel Structures, Vol. 5, Amsterdam (2004),
pp. 304–308.
Received 09. 04. 2015
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 5 93
Notch Effect on the Fatigue Behavior ...
|