Probabilistic Fatigue Crack Initiation and Propagation Fields Using the Strain Energy Density
Recently, Huffman developed a strain energy density based on Walker-like stress life and fatigue crack growth behavior. In this paper, the Huffman model based on local strain energy density is used to predict the fatigue crack initiation and propagation for the P355NL1 pressure vessel steel. This mo...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут проблем міцності ім. Г.С. Писаренко НАН України
2018
|
| Назва видання: | Проблемы прочности |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/173940 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Probabilistic Fatigue Crack Initiation and Propagation Fields Using the Strain Energy Density / J.A.F.O. Correia, P.J. Huffman, A.M.P. De Jesus, G. Lesiuk, J.M. Castro, R.A.B. Calcada, F. Berto // Проблемы прочности. — 2018. — № 4. — С. 128-145. — Бібліогр.: 32 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-173940 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1739402025-02-09T14:21:11Z Probabilistic Fatigue Crack Initiation and Propagation Fields Using the Strain Energy Density Построение вероятностных полей зарождения и роста усталостных трещин по критерию плотности энергии деформации Correia, J.A.F.O. Huffman, P.J. De Jesus, A.M.P. Lesiuk, G. Castro, J.M. Calcada, R.A.B. Berto, F. Научно-технический раздел Recently, Huffman developed a strain energy density based on Walker-like stress life and fatigue crack growth behavior. In this paper, the Huffman model based on local strain energy density is used to predict the fatigue crack initiation and propagation for the P355NL1 pressure vessel steel. This model is combined with the generalized probabilistic fatigue model proposed by Correia aiming the generation of probabilistic fatigue crack initiation and propagation fields. In this study, the local stress and strains at the crack tip were obtained combining linear-elastic and elastoplastic analyses. The probabilistic fatigue crack growth rates fields for several stress R-ratios are estimated considering strain, SWT and equivalent stress amplitude damage parameters. A comparison between the experimental fatigue crack growth (FCG) data and the generated probabilistic FCG fields is made with very satisfactory correlations being found. В настоящее время Хаффман разработал концепцию плотности энергии деформации, основанную на циклической долговечности и развитии усталостной трещины по типу Волкера. Модель Хаффмана, базирующаяся на локальной плотности деформации, используется для прогнозирования инициирования и распространения усталостной трещины в стали P355NL1, применяемой в сосудах высокого давления. Данная модель сочетается с обобщенной вероятностной моделью усталости, ранее предложенной одним из соавторов, суть которой состоит в генерации вероятностных полей инициирования и распространения усталостных трещин. Получены локальные напряжения и деформации в вершине трещины, объединяющие их линейно-упругие и упругопластические составляющие. Для нескольких значений коэффициента асимметрии цикла напряжений R оценены вероятностные поля скоростей роста усталостных трещин с учетом параметров повреждения, параметра Смита–Ватсона–Топпера (SWT) и эквивалентных параметров амплитуды напряжения. Сравнение экспериментальных данных по приращению усталостной трещины с прогнозируемыми вероятностными полями ее роста показывает их тесную корреляцию. На сьогодні Хаффман розробив концепцію густини енергії деформації на основі циклічної довговічності і поширення тріщини від утомленості по типу Волкера. Модель Хаффмана, що базується на локальній густині енергії деформації, використовується для прогнозування ініціювання і поширення тріщини від утомленості в сталі P355NL1, яка використовується для виготовлення посудин високого тиску. Дана модель поєднується з узагальненою імовірнісною моделлю утоми, раніше запропонованою одним із співавторів, суть якої полягає в генерації імовірнісних полів ініціювання і поширення тріщин від утомленості. Отримано локальні напруження і деформації у вершині тріщини, що об’єднують їх лінійно-пружні і пружнопластичні складові. Для декількох значень коефіцієнта асиметрії циклу напружень R оцінено імовірнісні поля швидкостей росту тріщин від утомленості з урахуванням параметрів пошкодження, параметра Сміта–Ватсона–Топпера (SWT) й еквівалентних параметрів амплітуди напруження. Порівняння експериментальних даних щодо приросту тріщини від утомленості з прогнозованими імовірнісними полями її росту свідчить про їх тісну кореляцію. The authors of this work would like to express their gratitude to the SciTech-Science and Technology for Competitive and Sustainable Industries, R&D project NORTE-01-0145-FEDER-000022 co-financed by Programme Operational Regional do Norte (“NORTE2020”) through Fundo Europeu de Desenvolvimento Regional (FEDER) and the Portuguese Science Foundation (FCT) through the post-doctoral grant SFRH/BPD/107825/2015 the for their collaboration, financial and technical support during this research works. 2018 Article Probabilistic Fatigue Crack Initiation and Propagation Fields Using the Strain Energy Density / J.A.F.O. Correia, P.J. Huffman, A.M.P. De Jesus, G. Lesiuk, J.M. Castro, R.A.B. Calcada, F. Berto // Проблемы прочности. — 2018. — № 4. — С. 128-145. — Бібліогр.: 32 назв. — англ. 0556-171X https://nasplib.isofts.kiev.ua/handle/123456789/173940 539.4 en Проблемы прочности application/pdf Інститут проблем міцності ім. Г.С. Писаренко НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Научно-технический раздел Научно-технический раздел |
| spellingShingle |
Научно-технический раздел Научно-технический раздел Correia, J.A.F.O. Huffman, P.J. De Jesus, A.M.P. Lesiuk, G. Castro, J.M. Calcada, R.A.B. Berto, F. Probabilistic Fatigue Crack Initiation and Propagation Fields Using the Strain Energy Density Проблемы прочности |
| description |
Recently, Huffman developed a strain energy density based on Walker-like stress life and fatigue crack growth behavior. In this paper, the Huffman model based on local strain energy density is used to predict the fatigue crack initiation and propagation for the P355NL1 pressure vessel steel. This model is combined with the generalized probabilistic fatigue model proposed by Correia aiming the generation of probabilistic fatigue crack initiation and propagation fields. In this study, the local stress and strains at the crack tip were obtained combining linear-elastic and elastoplastic analyses. The probabilistic fatigue crack growth rates fields for several stress R-ratios are estimated considering strain, SWT and equivalent stress amplitude damage parameters. A comparison between the experimental fatigue crack growth (FCG) data and the generated probabilistic FCG fields is made with very satisfactory correlations being found. |
| format |
Article |
| author |
Correia, J.A.F.O. Huffman, P.J. De Jesus, A.M.P. Lesiuk, G. Castro, J.M. Calcada, R.A.B. Berto, F. |
| author_facet |
Correia, J.A.F.O. Huffman, P.J. De Jesus, A.M.P. Lesiuk, G. Castro, J.M. Calcada, R.A.B. Berto, F. |
| author_sort |
Correia, J.A.F.O. |
| title |
Probabilistic Fatigue Crack Initiation and Propagation Fields Using the Strain Energy Density |
| title_short |
Probabilistic Fatigue Crack Initiation and Propagation Fields Using the Strain Energy Density |
| title_full |
Probabilistic Fatigue Crack Initiation and Propagation Fields Using the Strain Energy Density |
| title_fullStr |
Probabilistic Fatigue Crack Initiation and Propagation Fields Using the Strain Energy Density |
| title_full_unstemmed |
Probabilistic Fatigue Crack Initiation and Propagation Fields Using the Strain Energy Density |
| title_sort |
probabilistic fatigue crack initiation and propagation fields using the strain energy density |
| publisher |
Інститут проблем міцності ім. Г.С. Писаренко НАН України |
| publishDate |
2018 |
| topic_facet |
Научно-технический раздел |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/173940 |
| citation_txt |
Probabilistic Fatigue Crack Initiation and Propagation Fields Using the Strain Energy Density / J.A.F.O. Correia, P.J. Huffman, A.M.P. De Jesus, G. Lesiuk, J.M. Castro, R.A.B. Calcada, F. Berto // Проблемы прочности. — 2018. — № 4. — С. 128-145. — Бібліогр.: 32 назв. — англ. |
| series |
Проблемы прочности |
| work_keys_str_mv |
AT correiajafo probabilisticfatiguecrackinitiationandpropagationfieldsusingthestrainenergydensity AT huffmanpj probabilisticfatiguecrackinitiationandpropagationfieldsusingthestrainenergydensity AT dejesusamp probabilisticfatiguecrackinitiationandpropagationfieldsusingthestrainenergydensity AT lesiukg probabilisticfatiguecrackinitiationandpropagationfieldsusingthestrainenergydensity AT castrojm probabilisticfatiguecrackinitiationandpropagationfieldsusingthestrainenergydensity AT calcadarab probabilisticfatiguecrackinitiationandpropagationfieldsusingthestrainenergydensity AT bertof probabilisticfatiguecrackinitiationandpropagationfieldsusingthestrainenergydensity AT correiajafo postroenieveroâtnostnyhpolejzaroždeniâirostaustalostnyhtreŝinpokriteriûplotnostiénergiideformacii AT huffmanpj postroenieveroâtnostnyhpolejzaroždeniâirostaustalostnyhtreŝinpokriteriûplotnostiénergiideformacii AT dejesusamp postroenieveroâtnostnyhpolejzaroždeniâirostaustalostnyhtreŝinpokriteriûplotnostiénergiideformacii AT lesiukg postroenieveroâtnostnyhpolejzaroždeniâirostaustalostnyhtreŝinpokriteriûplotnostiénergiideformacii AT castrojm postroenieveroâtnostnyhpolejzaroždeniâirostaustalostnyhtreŝinpokriteriûplotnostiénergiideformacii AT calcadarab postroenieveroâtnostnyhpolejzaroždeniâirostaustalostnyhtreŝinpokriteriûplotnostiénergiideformacii AT bertof postroenieveroâtnostnyhpolejzaroždeniâirostaustalostnyhtreŝinpokriteriûplotnostiénergiideformacii |
| first_indexed |
2025-11-26T19:22:17Z |
| last_indexed |
2025-11-26T19:22:17Z |
| _version_ |
1849881989876809728 |
| fulltext |
UDC 539.4
Probabilistic Fatigue Crack Initiation and Propagation Fields Using the
Strain Energy Density
J. A. F. O. Correia,
a,1
P. J. Huffman,
b
A. M. P. De Jesus,
a
G. Lesiuk,
c
J. M. Castro,
a
R. A. B. Calcada,
a
and F. Berto
d
a Faculty of Engineering, University of Porto, Porto, Portugal
b John Deere, One John Deere Place, Moline, IL, USA
c Laboratory of Materials Science and Engineering, University of Cantabria, Santander, Cantabria,
Spain
d Department of Industrial and Mechanical Design, Norwegian University of Science and
Technology, Trondheim, Norway
1 jacorreia@inegi.up.pt
ÓÄÊ 539.4
Ïîñòðîåíèå âåðîÿòíîñòíûõ ïîëåé çàðîæäåíèÿ è ðîñòà óñòàëîñòíûõ
òðåùèí ïî êðèòåðèþ ïëîòíîñòè ýíåðãèè äåôîðìàöèè
Æ. À. Ô. Î. Êîððåéÿ
à
, Ï. Äæ. Õàôôìàí
á
, À. Ì. Ï. Äå Õåñóñ
à
, Ã. Ëåñþê
â
,
Æ. Ì. Êàñòðî
à
, Ð. À. Á. Êàëüñàäà
à
, Ô. Áåðòî
ã
à Ìàøèíîñòðîèòåëüíûé ôàêóëüòåò, Óíèâåðñèòåò Ïîðòó, Ïîðòó, Ïîðòóãàëèÿ
á Øòàá-êâàðòèðà Äæîí Äèð, Ìîëèí, Èëëèíîéñ, ÑØÀ
â Ëàáîðàòîðèÿ ìàòåðèàëîâåäåíèÿ è ìàøèíîñòðîåíèÿ, Êàíòàáðèéñêèé óíèâåðñèòåò, Ñàíòàíäåð,
Êàíòàáðèÿ, Èñïàíèÿ
ã Ôàêóëüòåò ïðîìûøëåííîãî è èíæåíåðíîãî ïðîåêòèðîâàíèÿ, Íîðâåæñêèé óíèâåðñèòåò åñòåñò-
âåííûõ è òåõíè÷åñêèõ íàóê, Òðîíõåéì, Íîðâåãèÿ
Ðîñò óñòàëîñòíîé òðåùèíû äîñòàòî÷íî õîðîøî èçó÷åí è îïèñàí ñ ïîìîùüþ íåñêîëüêèõ
ìîäåëåé, íàèáîëåå èçâåñòíûìè èç êîòîðûõ ÿâëÿþòñÿ óðàâíåíèÿ Ïàðèñà. Õîòÿ ïðîöåññû
èíèöèèðîâàíèÿ è ðàñïðîñòðàíåíèÿ óñòàëîñòíûõ òðåùèí èçó÷àþòñÿ îòäåëüíî, ðÿä èññëåäî-
âàòåëåé ïîäðîáíî ðàññìàòðèâàþò âçàèìîñâÿçü ìåæäó ýòèìè äâóìÿ óñòàëîñòíûìè ïðîöåñ-
ñàìè. Â ýòîì íàïðàâëåíèè ïðåäëîæåíî íåñêîëüêî ìîäåëåé ðîñòà óñòàëîñòíûõ òðåùèí,
îñíîâàííûõ íà ëîêàëüíûõ ïîäõîäàõ, â ÷àñòíîñòè ìîäåëü åäèíîãî ðîñòà (UniGrow). Äëÿ
íåêîòîðîãî ýëåìåíòàðíîãî îáúåìà ìàòåðèàëà ïðîöåññ ðîñòà óñòàëîñòíîé òðåùèíû ìîæíî
ïðåäñòàâèòü â âèäå ïîñëåäîâàòåëüíîñòè ïîâòîðíîãî çàðîæäåíèÿ (èíèöèèðîâàíèÿ) òðåùèíû.
 íàñòîÿùåå âðåìÿ Õàôôìàí ðàçðàáîòàë êîíöåïöèþ ïëîòíîñòè ýíåðãèè äåôîðìàöèè, îñíî-
âàííóþ íà öèêëè÷åñêîé äîëãîâå÷íîñòè è ðàçâèòèè óñòàëîñòíîé òðåùèíû ïî òèïó Âîëêåðà.
Ìîäåëü Õàôôìàíà, áàçèðóþùàÿñÿ íà ëîêàëüíîé ïëîòíîñòè äåôîðìàöèè, èñïîëüçóåòñÿ äëÿ
ïðîãíîçèðîâàíèÿ èíèöèèðîâàíèÿ è ðàñïðîñòðàíåíèÿ óñòàëîñòíîé òðåùèíû â ñòàëè P355NL1,
ïðèìåíÿåìîé â ñîñóäàõ âûñîêîãî äàâëåíèÿ. Äàííàÿ ìîäåëü ñî÷åòàåòñÿ ñ îáîáùåííîé âåðîÿò-
íîñòíîé ìîäåëüþ óñòàëîñòè, ðàíåå ïðåäëîæåííîé îäíèì èç ñîàâòîðîâ, ñóòü êîòîðîé ñîñòî-
èò â ãåíåðàöèè âåðîÿòíîñòíûõ ïîëåé èíèöèèðîâàíèÿ è ðàñïðîñòðàíåíèÿ óñòàëîñòíûõ òðå-
ùèí. Ïîëó÷åíû ëîêàëüíûå íàïðÿæåíèÿ è äåôîðìàöèè â âåðøèíå òðåùèíû, îáúåäèíÿþùèå èõ
ëèíåéíî-óïðóãèå è óïðóãîïëàñòè÷åñêèå ñîñòàâëÿþùèå. Äëÿ íåñêîëüêèõ çíà÷åíèé êîýôôèöè-
åíòà àñèììåòðèè öèêëà íàïðÿæåíèé R îöåíåíû âåðîÿòíîñòíûå ïîëÿ ñêîðîñòåé ðîñòà óñòà-
© J. A. F. O. CORREIA, P. J. HUFFMAN, A. M. P. DE JESUS, G. LESIUK, J. M. CASTRO, R. A. B.
CALCADA, F. BERTO, 2018
128 ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2018, ¹ 4
ëîñòíûõ òðåùèí ñ ó÷åòîì ïàðàìåòðîâ ïîâðåæäåíèÿ, ïàðàìåòðà Ñìèòà–Âàòñîíà–Òîïïåðà
(SWT) è ýêâèâàëåíòíûõ ïàðàìåòðîâ àìïëèòóäû íàïðÿæåíèÿ. Ñðàâíåíèå ýêñïåðèìåíòàëüíûõ
äàííûõ ïî ïðèðàùåíèþ óñòàëîñòíîé òðåùèíû ñ ïðîãíîçèðóåìûìè âåðîÿòíîñòíûìè ïîëÿìè
åå ðîñòà ïîêàçûâàåò èõ òåñíóþ êîððåëÿöèþ.
Êëþ÷åâûå ñëîâà: óñòàëîñòü, èíèöèèðîâàíèå òðåùèíû, ðîñò òðåùèíû, ëîêàëüíàÿ
ýíåðãèÿ äåôîðìàöèè, îáîáùåííàÿ âåðîÿòíîñòíàÿ ìîäåëü, ðåçóëüòàòû èñïûòàíèé íà
âûíîñëèâîñòü.
Introduction. Fatigue crack growth (FCG) process is associated with the formation of
new crack faces. Formation of new crack surfaces need the activation energy. During
fatigue process, this energy can be delivered to the process zone due to work of external
loading. The dissipated damage energy is responsible for “jump like” fatigue crack growth.
This concept is reflected in several formulas and ideas of fatigue crack growth [1–8], where
the fatigue crack growth process is treated as a discrete process where the local fatigue
crack growth is associated with a specified “unit” of fatigue crack growth (see Fig. 1):
da
dN
d
N f
�
*
. (1)
Generally, the fatigue crack growth can be postulated as a process involving the
following assumptions [2, 4, 5, 7, 8]:
(i) the material is composed of simple particles of a finite dimension, �, which
represents the elementary material block size, below which material cannot be regarded as a
continuum (Fig. 1);
(ii) ahead crack tip exist two plastic zones; static and cyclic (Fig. 1);
(iii) the fatigue crack tip is supposed to be equivalent to a notch with radius, �;
(iv) the fatigue crack growth process is considered as representing successive crack
increments (after N f cycles) due to crack re-initiations over the distance, d* , �.
The mentioned assumptions are already reflected in several fatigue crack propagation
models based on low-cycle fatigue (LCF) data [9–14].
Another relevant aspect in these local approaches is the calculation of local stresses
and strains at the crack tip. The most commonly used local approaches are based on
Coffin–Manson & Morrow relationships [15–17] with or without the influence of the mean
stress effects. Glinka [2], Peeker and Niemi [18], Noroozi et al. [7, 8], Hurley and Evans
[19], among others, used in their studies the strain fatigue damage parameter. More
Fig. 1. Discrete nature of fatigue fracture process.
ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2018, ¹ 4 129
Probabilistic Fatigue Crack Initiation and Propagation Fields ...
recently, Correia et al. [20], Hafezi et al. [21], and De Jesus and Correia [22] have used the
Smith–Watson–Topper (SWT) local damage parameter [23]. The equivalent stress amplitude
damage parameter, � ar , has been used for the fatigue crack growth modelling based on
local approaches by Correia and Huffman [12, 13].
In this paper, probabilistic fatigue crack initiation and propagation fields are presented
based on strain energy approach proposed by Huffman [24] and considering the generalized
probabilistic fatigue model suggested by Correia et al. [25]. The Huffman fatigue crack
growth model based on strain energy density is analyzed considering several fatigue
damage parameter such as strain, Smith–Watson–Topper (SWT), and equivalent stress
amplitude. An analysis of results from the application of the fatigue crack growth model
proposed by Huffman using the different damage parameters and experimental data is done.
The generalized probabilistic fatigue model is used aiming at generating probabilistic FCG
fields, for the fatigue damage parameters under consideration. In this analysis, experimental
fatigue data of the P355NL1 steel from the low-cycle fatigue and fatigue crack growth tests
are used [26–28].
1. Huffman Fatigue Crack Initiation and Growth Model. The fatigue crack growth
relations are established with the linear elastic fracture mechanics (LEFM) to evaluate the
stress distributions in a material. The variables such as the geometry and loading are
considered to obtain the fatigue crack growth rates. Glinka [2] was pioneer to relate the
local stress and strain at the crack tip, by relating the strain energy distribution with the
LEFM approach, and the fatigue failure of the material ahead the crack tip. This so called
local approach is used to generate the fatigue crack growth for several crack lengths and
calculating the stress or strain lives at the crack tip. These stresses and strains are used to
obtain the number of cycles to failure, N f , leading to the crack growth extension, �a.
Huffman [24] proposed a fatigue damage parameter, D, based on strain energy
density concepts and calculated it from cyclic stress-strain properties as given by
U
U
U
U
D
N
N
e
d c
p
d c f� �
�
�
�
�
�
�
�
�
�
�
�
�
� �
*
,
2
2
(2)
where Ue is the elastic strain energy density, U p
* is the complementary plastic strain
energy density, �c is the critical dislocation density, and Ud is the strain energy density
that can be estimated by
U
E
bd �
�
�
�
�
�
�
�
2 1
2
( )
| | ,
�
�
(3)
where � is the Poisson’s ratio and
�
b is the Burger’s vector. The value of | |
�
b is equal to
2 52 1010.
m for iron, steel or similar metals as can be found in [24]. Finding the strain
energy density by integrating the Ramberg–Osgood stress-strain relationship, results the
damage equation in terms of materials parameters:
2
1
1
2 2
2
1
U
n
n K
d c
a
�
� �
�
�
�
�
�
�
�
� �
�
�
�
�
�
�
�
�
�
� �
( )( )max
n
n
f
D
N
�
� �
1
2
, (4)
where � max is the maximum stress and � a is the stress amplitude. This equation can be
used to generate the stress–life, strain–life, and fatigue crack growth curves from cyclic
stress-strain properties.
130 ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2018, ¹ 4
J. A. F. O. Correia, P. J. Huffman, A. M. P. De Jesus, et al.
The strain-life or Morrow parameters can be equated based on Eq. (3) resulting:
� �
�
�
�
�
�
�
� �
�
�
�
�
�
�
�
� � �
�
�
f
d c
n
n nE
U K
n
n
E
2 1
12 2
1
1 2
/
( )/�
�
�
�
� �
� �
n
n1 3
, (5)
b
n
n
�
� �
� �1 3
, (6)
� �
� �
� �
�
�
�
�
�
�
�
�
�
�
�
� �
�
�
f
d c
n
E
K
U E
n
n
2
1
3
2 2
1
1 3( )
, (7)
c
n
�
�
� �
1
1 3
, (8)
where �� f is the fatigue strength coefficient, E is the elastic modulus, �K and �n are the
cyclic Ramberg–Osgood parameters [29], b is the fatigue strength exponent, �� f is the
fatigue ductility coefficient, c is the fatigue ductility exponent, and the �c parameter can
be determined by fitting the resultant strain–life curve to low-cycle strain–life data by
solving the Eq. (4):
�c
f
d
nN
U EN
n
n K
�
�
�
�
�
�
�
�
� �
�
�
�
�
�
�
�
�
�
�2 2
1
1
2
1( )
(
( / )
� �max )( ) .2
1
a
n
n
� �
�
�
�
�
�
(9)
Acording to [24], this parameter has been found between 1 10 3 1015 16
� �
�c m�2.
The Huffman fatigue crack growth rates using the �a calibrator can be given by
�a
U
n
n K
d c
a2 2
2
1
1
1
�
� �
�
�
�
�
�
�
�
� �
�
�
�
�
�
�
�
�
�
�
( )( )max
�
�
�
�
�
�
�
�
�
n
n
f
a
N
da
dN
�
0
. (10)
In Eq. (10), the stresses, � a and � max , are the local stresses near the crack tip that
can be related to the load, geometry and fatigue crack growth parameters as proposed by
Noroozi et al. [7, 8]. The fatigue crack growth rate considering the driving force is given by
the following expression:
da
dN
C� ( ) ,��
�
(11)
where � is the fatigue crack growth rate exponent, �� is the fatigue crack growth driving
force, and C is the fatigue crack growth rate coefficient that is given by
C
a
U
n
n
K E
d c
n
n
n
�
�
�
�
�
�
�
�
� �
�
�
�
� � � �
�
��
�
�
2 2
2
1
4 2
1�
( ) ( ) �
�
�
�
�
�
� �
� ��
�
�
�
�
�
�
�
1
1 1 3
11
2
1
2
n
n
n
x�
. (12)
The fatigue crack growth driving force can be calculated as
� ���
�K Kp p
max ( ) ,1
(13)
ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2018, ¹ 4 131
Probabilistic Fatigue Crack Initiation and Propagation Fields ...
K K Kapplied rmax max, ,� � (14)
� �K K Kapplied r� � , (15)
p
n
n
�
�
� �
2
1 3
, (16)
��
� �
� �
�
�
�
2 6
1
2n
n b c
, (17)
where �K is the total stress intensity factor range, �K applied is the applied stress intensity
factor range, K appliedmax, is the maximum applied stress intensity factor, and K r is the
residual stress intensity factor. The adjustment of the Huffman fatigue crack growth model
to the experimental results is made using the values of �a and x as calibrators.
Several authors such as Correia et al. [20, 26, 27], Hafezi et al. [21], and De Jesus and
Correia [22] proposed the use of the finite element method to obtain the stresses and strains
fields based on linear-elastic and elastoplastic analyses. These numerical analyses to
calculate the stresses and strains ahead of the crack tip can be used for fitting the fatigue
crack growth model proposed by Huffman [24] to the experimental FCG data.
2. Probabilistic Fatigue Damage Fields. The probabilistic fatigue damage fields can
be obtained using the generalized probabilistic model for several fatigue damage parameters
proposed by Correia et al. [25]. Originally, the probabilistic model was proposed by
Castillo and Fernández-Canteli [30] for stress- and strain-based fatigue damage parameters
using the Weibull or Gumbel distributions. These probabilistic distributions satisfy the
statistical and physical requirements of the fatigue data. Correia et al. [25] proposed the
generalization of the fatigue probabilistic model for several damage parameters, considering
the similarity between the power relations used for the deterministic damage representation
and the hyperbolic probabilistic fields proposed by Castillo and Fernández-Canteli [30]:
�� q N f( ), (18)
� � �
�
� �( ) ,2 0N f (19)
where � is a fatigue damage parameter, �0 is the fatigue (endurance) limit, � and � are
material constants, q is the decreasing function of total fatigue life, and finally, 2N f or
N f represent the reversals to failure and the number of cycles to failure, respectively.
The deterministic power-law model is shown in Fig. 2. Several fatigue damage
parameters based on stress, strain or energy criteria, describing the same schematic
representation of Fig. 2, can be used in Eqs. (18) and (19).
Thus, fatigue damage parameters such as strain amplitude, �a , walker-like strain, �w ,
Smith–Watson–Topper, SWT, as well as the equivalent stress amplitude, � ar , among
others, can be described by the generalized fatigue damage parameter, �:
� �� a , (20)
� � �
�
�
� �
�
�
�
�
�
�
�
�
w a
R
w
2
1
1
, (21)
132 ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2018, ¹ 4
J. A. F. O. Correia, P. J. Huffman, A. M. P. De Jesus, et al.
� � �� �SWT amax , (22)
� � � �
� �
� �
�
ar a
w w( ) ( ) ,max
1
(23)
where the Walker exponent is defined as
�w
n
n
�
� �
� �
1
1 3
. (24)
According to [31], the main advantage of the �w parameter is to describe the material
mean stress fatigue behavior sensitivity, where for the SWT-life model, this parameter is
equal to 0.5.
In this way, the generalized probabilistic model to describe the fatigue failure criterion
for several damage parameters was proposed by Correia et al. [25], based on Castillo and
Fernández-Canteli probabilistic model [30], is given by
P F N
N N
f ar
f
� � � �
��
�
�
�
�
�
�
!
( ; ) exp
log( ) log( )
* *
�
� � "
#
$
1
0 0
%
!
&
'
!
(
!
, (25)
log( ) log( ) ,N Nf 0 0� � ") (26)
where P is the probability of failure, N 0 and �0 are values for normalizing, and $, #,
and " are the dimensionless Weibull parameters. The normalizing parameters N 0 and �0
are the threshold value for life and the corresponding value for the equivalent stress,
respectively. The maximum likelihood method is used to estimate the Weibull parameters,
where the details can be found in [30].
3. Application of the Strain Energy Density Based Crack Propagation Model to
Generate Probabilistic Fatigue Crack Initiation and Propagation Data.
3.1. Procedure to generate Probabilistic Fatigue Crack Initiation and Propagation
Fields. The procedure proposed to generate probabilistic fatigue crack initiation and
propagation fields may be summarized in the following steps:
Fig. 2. Schematic representation of the deterministic power-law fatigue failure criterion [25].
ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2018, ¹ 4 133
Probabilistic Fatigue Crack Initiation and Propagation Fields ...
3.1.1. Probabilistic Fatigue Crack Initiation Fields:
(i) estimation of the Weibull parameters for the generalized probabilistic fatigue
model based on strain, stress or energy damage parameters (Section 2), using experimental
strain-life data from smooth specimens;
(ii) application of the Huffman fatigue crack initiation model to estimate the Morrow
constants (Section 1);
(iii) computation of the probabilistic Huffman fatigue crack initiation models for
several fatigue damage parameters.
3.1.2. Probabilistic Fatigue Crack Propagation Fields:
(i) the first step considered in probabilistic fatigue crack initiation fields (Section 2);
(ii) application of the Huffman fatigue crack propagation model based on strain
energy density with probabilistic fatigue damage models (Section 1);
(iii) Computation of the P da dN K R� � �� fields.
3.2. Probabilistic Fatigue Crack Initiation Data. The parameters of the cyclic
elastoplastic stress–strain curves and elastic properties of the P355NL1 steel were collected
in references [26–28]. These parameters were obtained based on experimental low-cycle
fatigue tests of smooth specimens performed under strain controlled conditions carried out
according the ASTM E606 standard. In Table 1 the cyclic stress-strain properties for the
P355NL1 steel are shown.
The Morrow constants obtained using the Coffin–Manson & Morrow relation [15–17]
are presented in Table 2. In this table the Morrow constants estimates according to the
assumption in the Huffman model [24] presented in Section 1 are also shown. This model
allows evaluating the fatigue crack initiation phase based on strain energy. Equations (5)–
(8) were used to estimate the Morrow constants and Eq. (9) used to obtain the critical
dislocation density. A good agreement for the Morrow strain-life constants between the
Huffman model and the Coffin–Manson & Morrow relation is verified (see Table 2). The
critical dislocation density, �c , estimated and presented in Table 2, is similar when
compared with other materials of identical mechanical properties (see [24]).
In Fig. 3, the stress–life, strain–life, and SWT–life curves are presented, being
compared the experimental results with the Huffman fatigue crack initiation model
predictions. In these figures, a good agreement between the experimental results and the
fatigue crack initiation model predictions by Huffman [24] can be observed.
T a b l e 1
Cyclic Stress-Strain Properties for P355NL1 Steel [26–28]
Strain ratio R
�
E, GPa � �K , MPa �n
0
205.20 0.275
913.6 0.1459
�1 1022.3 0.1682
“�1” � “0” 948.35 0.1533
T a b l e 2
Morrow Constants for P355NL1 Steel Calculated as per Eqs. (5)–(8)
Strain ratio
R
�
Model �� f ,
MPa
b �� f c �c ,
m/m3
“�1” � “0” Morrow equation 1005.5 �0.1033 0.3678 �0.5475 –
Huffman model 959.0 �0.1050 1.08 �0.6850 7 0 1015.
134 ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2018, ¹ 4
J. A. F. O. Correia, P. J. Huffman, A. M. P. De Jesus, et al.
a
b
Fig. 3. Stress–life (a), strain–life (b), and SWT–life (c) curves of P355NL1 steel.
c
ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2018, ¹ 4 135
Probabilistic Fatigue Crack Initiation and Propagation Fields ...
Figure 4 shows, respectively, the probabilistic fields for several fatigue damage
parameters as strain amplitude, SWT, and equivalent stress amplitude, using the generalized
probabilistic model [Eqs. (25) and (26)] presented in Section 2 and proposed by Correia et
al. [25]. The Walker exponent for the P355NL1 steel is equal to 0.79 and was used to
generate the probabilistic field (Fig. 4c). These probabilistic fields were used to generate
the probabilistic Huffman fatigue crack growth fields.
3.3. Probabilistic Fatigue Crack Propagation Data. The fatigue crack propagation
data of the P355NL1 steel collected in [26–28] were used to evaluate the fatigue crack
growth model based on strain energy proposed by Huffman [24].
Fatigue crack growth (FCG) rates for several stress R-ratios under constant amplitude
loading conditions were obtained using the ASTM E647 standard and considering the Paris
law [32]. The CT specimens of P355NL1 steel were built with a width W � 40 mm and a
thickness B� 4.5 mm. For the P355NL1 steel, the FCG tests were carried out for stress
R-ratios, R
�
� 0, 0.5, and 0.7. All FCG tests were carried out for stress R-ratios, R
�
� 0,
0.5, and 0.7, in air at room temperature under a sinusoidal waveform at a maximum
frequency of 20 Hz.
In this research, the results from the linear-elastic and elastoplastic finite element
analyses ahead of the crack tip of the CT geometry are required and were generated by De
Jesus and Correia [20, 22, 27]. In those analyses, the cyclic elastoplastic curve obtained
experimentally was considered by De Jesus and Correia [20, 22, 27]. The residual stress
intensity factor results, K r , are presented in Fig. 5 against the applied stress intensity factor
range, �K applied , for CT specimen built in P355NL1 steel, which were calculated by De
Jesus and Correia [20, 22, 27]. The numerical model of the CT specimen was highly refined
at the crack tip region in order to estimate the crack increment, �a. De Jesus and Correia
[20, 22, 26, 27] in their investigations estimated the �a parameter as equal to 4 5 10 3.
� m.
This value was used in this research.
The fatigue crack growth model based on strain energy proposed by Huffman [24]
with the generalized probabilistic model for several fatigue damage parameters was applied
to CT specimen geometry made of P355NL1 steel. The fatigue crack growth rate constants
for several fatigue damage parameters, such as, strain amplitude, SWT, and Walker stress
amplitude, were obtained from Eqs. (10) and (11)–(17) are shown in Table 3.
The probabilistic Huffman fatigue crack growth rates based on strain, SWT, and
Walker stress amplitude fatigue damage parameters for the P355NL1 pressure vessel steel
taking into account several stress R-ratios, are shown in Figs. 6–8. Figure 9 shows that the
models appear to be more sensitive to stress ratio effects compared to the measured fatigue
crack growth rates. It can be seen that models which demonstrate high levels of stress ratio
sensitivity show particularly poor correlation at high stress R-ratios, R
�
, for materials
which seem insensitive to stress R-ratio effects. When compared to the stress-life or
strain-life, however, these models don’t demonstrate to be so inaccurate. Although the
P355NL1 steel was tested at 2 strain R-ratios, R
�
, the stress R-ratios, R
�
, were not
drastically different. Because of this, differences in the stress-strain behavior of the material
at different stress R-ratios may not have been observed even if they exist. If the material
demonstrates stress ratio-sensitive stress-strain behavior, it could make a difference in how
the residual stress would be calculated at a crack tip. A difference in the behavior of the
residual stress would influence the residual stress intensity factor, K r , and therefore would
influence the calculated stress ratio dependent fatigue crack growth rates. This would
appear as a lack of stress-ratio effect in a material, when it could in actuality be the same
stress ratio effect as far as what the material itself goes through at the crack tip, but it would
be disguised by a change in cyclic stress-strain behavior influencing the residual stress
profile differently at different stress-ratios.
136 ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2018, ¹ 4
J. A. F. O. Correia, P. J. Huffman, A. M. P. De Jesus, et al.
a
b
c
Fig. 4. Probabilistic �a fN� (a), SWT N f� (b), and �ar fN� (c) fields of P355NL1 steel.
ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2018, ¹ 4 137
Probabilistic Fatigue Crack Initiation and Propagation Fields ...
It is interesting to note that the strain amplitude probability field appears to be less
sensitive to stress ratio. This could be evidence in support of using strain-life based
calculations preferentially over stress-life based calculations under certain circumstances,
though much further investigation would be necessary to determine that. These results are
also evidence that care should be taken when selecting a mean stress effect, as overly
sensitive models can lead to over-designed structures or under-designed structures depending
on the expected load cases.
T a b l e 3
Fatigue Crack Growth Rate Constants from Eqs. (10)–(17) for P355NL1 Steel
Fatigue damage
parameter
Stress
ratio
R
�
�a,
m
x,
m
C ,
MPa m� �
�/ 2 1
� p
Strain amplitude
�a
0 4 5 10 3.
� 0 7 10 5.
� 8 488 10 11.
� 2.606 0.210
0.5 7 927 10 11.
� 2.627 0.210
0.7 7 004 10 11.
� 2.665 0.210
SWT 0 4 5 10 3.
� 3 0 10 5.
� 2 872 10 10.
� 2.571 0.210
0.5 2 774 10 10.
� 2.582 0.210
0.7 2 598 10 10.
� 2.602 0.210
Walker stress
amplitude
�ar
0 4 5 10 3.
� 2 5 10 5.
� 1609 10 11.
� 2.611 0.210
0.5 1495 10 11.
� 2.631 0.210
0.7 1288 10 11.
� 2.685 0.210
Fig. 5. Residual stress intensity factor Kr as a function of the �Kapplied for the CT geometry made
in P355NL1 steel.
138 ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2018, ¹ 4
J. A. F. O. Correia, P. J. Huffman, A. M. P. De Jesus, et al.
Fig. 6. Probabilistic prediction of the fatigue crack growth for P355NL1 steel based on Huffman FCG
model and P Na� �� field for R
�
� 0 (a), 0.5 (b), and 0.7 (c).
a
b
c
ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2018, ¹ 4 139
Probabilistic Fatigue Crack Initiation and Propagation Fields ...
a
b
c
Fig. 7. Probabilistic prediction of the fatigue crack growth for P355NL1 steel based on Huffman FCG
model and P SWT N� � field for R
�
� 0 (a), 0.5 (b), and 0.7 (c).
140 ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2018, ¹ 4
J. A. F. O. Correia, P. J. Huffman, A. M. P. De Jesus, et al.
a
b
c
Fig. 8. Probabilistic prediction of the fatigue crack growth for P355NL1 steel based on Huffman FCG
model and P Nar� �� field for R
�
� 0 (a), 0.5 (b), and 0.7 (c).
ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2018, ¹ 4 141
Probabilistic Fatigue Crack Initiation and Propagation Fields ...
a
b
c
Fig. 9. Fatigue crack growth rates for the probability of failure equal to 50% based on Huffman
model and P Na� �� (a), P SWT N� � (b), and P Nar� �� (c) fields for several stress R-ratios.
142 ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2018, ¹ 4
J. A. F. O. Correia, P. J. Huffman, A. M. P. De Jesus, et al.
C o n c l u s i o n s
1. The strain energy based fatigue crack initiation model proposed by Huffman can be
used to estimate the Morrow constants giving good results when compared with experimental
results.
2. The fatigue crack propagation model based on strain energy density proposed by
Huffman can be used with results from the linear-elastic and elastoplastic numerical
analyses and a good agreement is observed.
3. The Huffman model uses the calibration parameters, �a and x, which are required
for the fit of the Huffman FCG model to the experimental FCG data.
4. The combination of the Huffman fatigue crack growth model with the generalized
probabilistic model allowed to generate the probabilistic fields for the fatigue crack
propagation rates.
5. The probabilistic crack propagation fields generated using several fatigue damage
parameters such as strain, SWT, and equivalent stress amplitude, allowed to conclude that
the strain damage parameter is the most suitable for the P355NL1 steel, taking into account
the comparison that is made with the experimental crack propagation data, showing that
this material is not sensitive to the mean stress effects.
Acknowledgements. The authors of this work would like to express their gratitude to
the SciTech-Science and Technology for Competitive and Sustainable Industries, R&D
project NORTE-01-0145-FEDER-000022 co-financed by Programme Operational Regional
do Norte (“NORTE2020”) through Fundo Europeu de Desenvolvimento Regional
(FEDER) and the Portuguese Science Foundation (FCT) through the post-doctoral grant
SFRH/BPD/107825/2015 the for their collaboration, financial and technical support during
this research works.
Ð å ç þ ì å
гñò òð³ùèíè â³ä óòîìëåíîñò³ äîñòàòíüî äîáðå âèâ÷åíî é îïèñàíî çà äîïîìîãîþ
äåê³ëüêîõ ìîäåëåé, íàéá³ëüø â³äîìèìè ñåðåä ÿêèõ º ð³âíÿííÿ Ïàð³ñà. Õî÷à ïðîöåñè
³í³ö³þâàííÿ ³ ïîøèðåííÿ òð³ùèí â³ä óòîìëåíîñò³ âèâ÷àþòüñÿ îêðåìî, äåÿê³ äîñë³ä-
íèêè äåòàëüíî ðîçãëÿäàþòü âçàºìîçâ’ÿçîê ì³æ öèìè äâîìà óòîìíèìè ïðîöåñàìè. Ó
öüîìó íàïðÿìêó çàïðîïîíîâàíî äåê³ëüêà ìîäåëåé ðîñòó òð³ùèí â³ä óòîìëåíîñò³, ùî
áàçóþòüñÿ íà ëîêàëüíèõ ï³äõîäàõ, çîêðåìà ìîäåëü ºäèíîãî ðîñòó (UniGrow). Äëÿ
äåÿêîãî åëåìåíòàðíîãî îá’ºìó ìàòåð³àëó ïðîöåñ ðîñòó òð³ùèíè â³ä óòîìëåíîñò³
ìîæíà ïðåäñòàâèòè ó âèãëÿä³ ïîñë³äîâíîñò³ ïîâòîðíîãî çàðîäæåííÿ (³í³ö³þâàííÿ)
òð³ùèíè. Íà ñüîãîäí³ Õàôôìàí ðîçðîáèâ êîíöåïö³þ ãóñòèíè åíåð㳿 äåôîðìàö³¿ íà
îñíîâ³ öèêë³÷íî¿ äîâãîâ³÷íîñò³ ³ ïîøèðåííÿ òð³ùèíè â³ä óòîìëåíîñò³ ïî òèïó Âîë-
êåðà. Ìîäåëü Õàôôìàíà, ùî áàçóºòüñÿ íà ëîêàëüí³é ãóñòèí³ åíåð㳿 äåôîðìàö³¿,
âèêîðèñòîâóºòüñÿ äëÿ ïðîãíîçóâàííÿ ³í³ö³þâàííÿ ³ ïîøèðåííÿ òð³ùèíè â³ä óòîìëå-
íîñò³ â ñòàë³ P355NL1, ÿêà âèêîðèñòîâóºòüñÿ äëÿ âèãîòîâëåííÿ ïîñóäèí âèñîêîãî
òèñêó. Äàíà ìîäåëü ïîºäíóºòüñÿ ç óçàãàëüíåíîþ ³ìîâ³ðí³ñíîþ ìîäåëëþ óòîìè, ðàí³-
øå çàïðîïîíîâàíîþ îäíèì ³ç ñï³âàâòîð³â, ñóòü ÿêî¿ ïîëÿãຠâ ãåíåðàö³¿ ³ìîâ³ðí³ñíèõ
ïîë³â ³í³ö³þâàííÿ ³ ïîøèðåííÿ òð³ùèí â³ä óòîìëåíîñò³. Îòðèìàíî ëîêàëüí³ íàïðó-
æåííÿ ³ äåôîðìàö³¿ ó âåðøèí³ òð³ùèíè, ùî îá’ºäíóþòü ¿õ ë³í³éíî-ïðóæí³ ³ ïðóæíî-
ïëàñòè÷í³ ñêëàäîâ³. Äëÿ äåê³ëüêîõ çíà÷åíü êîåô³ö³ºíòà àñèìåò𳿠öèêëó íàïðóæåíü R
îö³íåíî ³ìîâ³ðí³ñí³ ïîëÿ øâèäêîñòåé ðîñòó òð³ùèí â³ä óòîìëåíîñò³ ç óðàõóâàííÿì
ïàðàìåòð³â ïîøêîäæåííÿ, ïàðàìåòðà Ñì³òà–Âàòñîíà–Òîïïåðà (SWT) é åêâ³âàëåíòíèõ
ïàðàìåòð³â àìïë³òóäè íàïðóæåííÿ. Ïîð³âíÿííÿ åêñïåðèìåíòàëüíèõ äàíèõ ùîäî ïðè-
ðîñòó òð³ùèíè â³ä óòîìëåíîñò³ ç ïðîãíîçîâàíèìè ³ìîâ³ðí³ñíèìè ïîëÿìè ¿¿ ðîñòó
ñâ³ä÷èòü ïðî ¿õ ò³ñíó êîðåëÿö³þ.
ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2018, ¹ 4 143
Probabilistic Fatigue Crack Initiation and Propagation Fields ...
1. K. N. Raju, “An energy balance criterion for crack growth under fatigue loading from
considerations of energy of plastic deformation,” Int. J. Fract. Mech., 8, No. 1, 1–14
(1972).
2. G. Glinka, “A notch stress-strain analysis approach to fatigue crack growth,” Eng.
Fract. Mech., 21, No. 2, 245–261 (1985).
3. O. E. Andreikiv and M. V. Lishchyns’ka, “Equations of growth of fatigue cracks in
inhomogeneous plates,” Mater. Sci., 35, No. 3, 355–362 (1999).
4. M. Szata, Modeling of Fatigue Crack Growth Using Energy Method [in Polish],
Publishing House of Wroclaw University of Technology, Wroclaw, Poland (2002).
5. M. Szata and G. Lesiuk, “Algorithms for the estimation of fatigue crack growth using
energy method,” Arch. Civ. Mech. Eng., 9, No. 1, 119–134 (2009).
6. N. W. Klingbeil, “A total dissipated energy theory of fatigue crack growth in ductile
solids,” Int. J. Fatigue, 25, No. 2, 117–128 (2003).
7. A. H. Noroozi, G. Glinka, and S. Lambert, “A two parameter driving force for fatigue
crack growth analysis,” Int. J. Fatigue, 27, Nos. 10–12, 1277–1296 (2005).
8. A. H. Noroozi, G. Glinka, and S. Lambert, “A study of the stress ratio effects on
fatigue crack growth using the unified two-parameter fatigue crack growth driving
force,” Int. J. Fatigue, 29, Nos. 9–11, 1616–1633 (2007).
9. L. Chen, L. Cai, and D. Yao, “A new method to predict fatigue crack growth rate of
materials based on average cyclic plasticity strain damage accumulation,” Chinese J.
Aeronaut., 26, No. 1, 130–135 (2013).
10. A. S. F. Alves, L. M. C. M. V. Sampayo, J. A. F. O. Correia, et al., “Fatigue life
prediction based on crack growth analysis using an equivalent initial flaw size model:
application to a notched geometry,” Procedia Engineer., 114, 730–737 (2015).
11. J. A. F. O. Correia, S. Blasón, A. M. P. De Jesus, et al., “Fatigue life prediction based
on an equivalent initial flaw size approach and a new normalized fatigue crack growth
model,” Eng. Fail. Anal., 69, 15–28 (2016).
12. J. A. F. O. Correia, P. J. Huffman, A. M. P. De Jesus, et al., “Unified two-stage
fatigue methodology based on a probabilistic damage model applied to structural
details,” Theor. Appl. Fract. Mech., 92, 252–265 (2017).
13. P. J. Huffman, J. Ferreira, J. A. F. O. Correia, et al., “Fatigue crack propagation
prediction of a pressure vessel mild steel based on a strain energy density model,”
Frattura ed Integrità Strutturale, 11, No. 42, 74–84 (2017), DOI: 10.3221/IGF-ESIS.
42.09.
14. J. A. F. O. Correia, A. M. P. De Jesus, A. S. Ribeiro, and A. A. Fernandes,
“Strain-based approach for fatigue crack propagation simulation of the 6061-T651
aluminium alloy,” Int. J. Mater. Struct. Integr., 11, Nos. 1–3, 1–15 (2017), DOI:
10.1504/IJMSI.2017.087336.
15. L. F. Coffin, Jr., “A study of the effects of cyclic thermal stresses on a ductile metal,”
Trans. ASME, 76, 931–950 (1954).
16. S. S. Manson, Behavior of Materials under Conditions of Thermal Stress, NACA
TN-2933, National Advisory Committee for Aeronautics (1954).
17. J. D. Morrow, “Cyclic plastic strain energy and fatigue of metals,” in: Internal
Friction, Damping, and Cyclic Plasticity, ASTM STP 378, Philadelphia, PA (1965),
pp. 45–87.
18. E. Peeker and E. Niemi, “Fatigue crack propagation model based on a local strain
approach,” J. Constr. Steel Res., 49, No. 2, 139–155 (1999).
144 ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2018, ¹ 4
J. A. F. O. Correia, P. J. Huffman, A. M. P. De Jesus, et al.
19. P. J. Hurley and W. J. Evans, “A methodology for predicting fatigue crack propagation
rates in titanium based on damage accumulation,” Scripta Mater., 56, No. 8, 681–684
(2007).
20. J. A. F. O. Correia, A. M. P. De Jesus, A. Fernández-Canteli, “A procedure to derive
probabilistic fatigue crack propagation data,” Int. J. Struct. Integr., 3, No. 2, 158–183
(2012), DOI: 10.1108/17579861211235183.
21. M. H. Hafezi, N. N. Abdullah, J. A. F. O. Correia, and A. M. P. De Jesus, “An
assessment of a strain-life approach for fatigue crack growth,” Int. J. Struct. Integr., 3,
No. 4, 344–376 (2012), DOI: 10.1108/17579861211281173.
22. A. M. P. De Jesus and J. A. F. O. Correia, “Critical assessment of a local strain-based
fatigue crack growth model using experimental data available for the P355NL1 steel,”
J. Press. Vess. Technol., 135, No. 1, 011404-1–0114041-9 (2013).
23. K. N. Smith, P. Watson, and T. H. Topper, “A stress-strain function for the fatigue of
metals,” J. Mater., 5, No. 4, 767–778 (1970).
24. P. J. Huffman, “A strain energy based damage model for fatigue crack initiation and
growth,” Int. J. Fatigue, 88, 197–204 (2016).
25. J. Correia, N. Apetre, A. Arcari, et al., “Generalized probabilistic model allowing for
various fatigue damage variables,” Int. J. Fatigue, 100, Part 1, 187–194 (2017).
26. J. A. F. O. Correia, An Integral Probabilistic Approach for Fatigue Lifetime Prediction
of Mechanical and Structural Components, Ph.D. Thesis, University of Porto (2014).
27. J. A. F. O. Correia, A. M. P. De Jesus, and A. Fernández-Canteli, “Local unified
probabilistic model for fatigue crack initiation and propagation: application to a
notched geometry,” Eng. Struct., 52, 394–497 (2013).
28. J. A. F. O. Correia, A. M. P. De Jesus, P. M. G. P. Moreira, and P. J. Tavares, “Crack
closure effects on fatigue crack propagation rates: application of a proposed theoretical
model,” Adv. Mater. Sci. Eng., 2016, 3026745 (2016), DOI: 10.1155/2016/3026745.
29. W. Ramberg and W. R. Osgood, Description of the Stress–Strain Curves by the Three
Parameters, NACA TN-902, National Advisory Committee for Aeronautics (1943).
30. E. Castillo and Fernández-Canteli, A Unified Statistical Methodology for Modeling
Fatigue Damage, Springer (2009).
31. N. E. Dowling, “Mean stress effects in strain-life fatigue,” Fatigue Fract. Eng. Mater.
Struct., 32, No. 12, 1004–1019 (2009).
32. P. C. Paris, M. P. Gomez, and W. E. Anderson, “A rational analytic theory of
fatigue,” Trend Eng., 13, 9–14 (1961).
Received 15. 02. 2018
ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2018, ¹ 4 145
Probabilistic Fatigue Crack Initiation and Propagation Fields ...
|