Determination of hydraulic parameters for geothermal heat exchanger
Purpose of the work was to determine basic hydraulic parameters for geothermal heat exchanger on the basis of determining of conditions for water gravity flowing through the tubular system of the given sizes.
Gespeichert in:
| Datum: | 2018 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут геотехнічної механіки імені М.С. Полякова НАН України
2018
|
| Schriftenreihe: | Геотехнічна механіка |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/174413 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Determination of hydraulic parameters for geothermal heat exchanger / O.P. Chepak, V.K. Kostenko, O.L. Zavyalova // Геотехнічна механіка: Міжвід. зб. наук. праць. — Дніпро: ИГТМ НАНУ, 2018. — Вип. 140. — С. 166-175. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-174413 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1744132025-02-09T17:58:24Z Determination of hydraulic parameters for geothermal heat exchanger Определение гидравлических параметров геотермального теплообменника Визначення гідравлічних параметрів геотермального теплообмінника Chepak, O.P. Kostenko, V.K. Zavyalova, O.L. Purpose of the work was to determine basic hydraulic parameters for geothermal heat exchanger on the basis of determining of conditions for water gravity flowing through the tubular system of the given sizes. Цель работы заключается в определении основных гидравлических параметров геотермального теплообменника на основе раскрытия условий самотечного прохождения воды через трубчатую систему заданных размеров. Мета роботи полягає у визначенні основних гідравлічних параметрів геотермального теплообмінника на основі розкриття умов самотечного проходження води через трубчасту систему заданих розмірів. 2018 Article Determination of hydraulic parameters for geothermal heat exchanger / O.P. Chepak, V.K. Kostenko, O.L. Zavyalova // Геотехнічна механіка: Міжвід. зб. наук. праць. — Дніпро: ИГТМ НАНУ, 2018. — Вип. 140. — С. 166-175. — Бібліогр.: 5 назв. — англ. 1607-4556 https://nasplib.isofts.kiev.ua/handle/123456789/174413 536.242:620.92:622.271 en Геотехнічна механіка application/pdf Інститут геотехнічної механіки імені М.С. Полякова НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| description |
Purpose of the work was to determine basic hydraulic parameters for geothermal heat exchanger on the basis of determining of conditions for water gravity flowing through the tubular system of the given sizes. |
| format |
Article |
| author |
Chepak, O.P. Kostenko, V.K. Zavyalova, O.L. |
| spellingShingle |
Chepak, O.P. Kostenko, V.K. Zavyalova, O.L. Determination of hydraulic parameters for geothermal heat exchanger Геотехнічна механіка |
| author_facet |
Chepak, O.P. Kostenko, V.K. Zavyalova, O.L. |
| author_sort |
Chepak, O.P. |
| title |
Determination of hydraulic parameters for geothermal heat exchanger |
| title_short |
Determination of hydraulic parameters for geothermal heat exchanger |
| title_full |
Determination of hydraulic parameters for geothermal heat exchanger |
| title_fullStr |
Determination of hydraulic parameters for geothermal heat exchanger |
| title_full_unstemmed |
Determination of hydraulic parameters for geothermal heat exchanger |
| title_sort |
determination of hydraulic parameters for geothermal heat exchanger |
| publisher |
Інститут геотехнічної механіки імені М.С. Полякова НАН України |
| publishDate |
2018 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/174413 |
| citation_txt |
Determination of hydraulic parameters for geothermal heat exchanger / O.P. Chepak, V.K. Kostenko, O.L. Zavyalova // Геотехнічна механіка: Міжвід. зб. наук. праць. — Дніпро: ИГТМ НАНУ, 2018. — Вип. 140. — С. 166-175. — Бібліогр.: 5 назв. — англ. |
| series |
Геотехнічна механіка |
| work_keys_str_mv |
AT chepakop determinationofhydraulicparametersforgeothermalheatexchanger AT kostenkovk determinationofhydraulicparametersforgeothermalheatexchanger AT zavyalovaol determinationofhydraulicparametersforgeothermalheatexchanger AT chepakop opredeleniegidravličeskihparametrovgeotermalʹnogoteploobmennika AT kostenkovk opredeleniegidravličeskihparametrovgeotermalʹnogoteploobmennika AT zavyalovaol opredeleniegidravličeskihparametrovgeotermalʹnogoteploobmennika AT chepakop viznačennâgídravlíčnihparametrívgeotermalʹnogoteploobmínnika AT kostenkovk viznačennâgídravlíčnihparametrívgeotermalʹnogoteploobmínnika AT zavyalovaol viznačennâgídravlíčnihparametrívgeotermalʹnogoteploobmínnika |
| first_indexed |
2025-11-29T05:35:37Z |
| last_indexed |
2025-11-29T05:35:37Z |
| _version_ |
1850101829136809984 |
| fulltext |
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2018. № 140
166
УДК 536.242:620.92:622.271
DETERMINATION OF HYDRAULIC PARAMETERS FOR GEOTHERMAL HEAT
EXCHANGER
1Chepak O. P., 1Kostenko V.K., 1Zavyalova O.L.
1
Donetsk National Technical University MES of Ukraine
ВИЗНАЧЕННЯ ГІДРАВЛІЧНИХ ПАРАМЕТРІВ ГЕОТЕРМАЛЬНОГО ТЕПЛООБМІННИКА
1Чепак О.П., 1Костенко В.К., 1Зав’ялова О.Л.
1
Донецький національний технічний університет МОН України
ОПРЕДЕЛЕНИЕ ГИДРАВЛИЧЕСКИХ ПАРАМЕТРОВ ГЕОТЕРМАЛЬНОГО
ТЕПЛООБМЕННИКА
1Чепак О.П., 1Костенко В.К., 1Завьялова Е.Л.
1
Донецкий национальный технический университет МОН Украины
Annotation. Mineral mining by open cast is inevitably accompanied by anthropogenic transformation of fertile
earths and hampers their practical use. The idea of the proposed method consists in creation of a treating object – a
bioplateau - in the goaf of quarry. In the bioplateau, higher water plants will clean the quarry waters by way of absorbing
mineral substances from water via roots, stems and leaves. Root, underwater and surface cellular mass will grow up
and, in the process of the cell dying off and decomposition, will form humus part of fertile layer. Due to technical
difficulties and high costs of water pumping into the borehole, it is necessary to determine basic hydraulic parameters of
bioplateau for arranging its gravity flow. Purpose of the work was to determine basic hydraulic parameters for geothermal
heat exchanger on the basis of determining of conditions for water gravity flowing through the tubular system of the
given sizes. It is established that for arranging water feed into the geothermal borehole of biotreating object in the mode
of gravity flow, it is necessary to arrange bottom of the «Morskaya Balka» Quarry with slope at angel no less 4°. One of
the basic parameters, substantially impacting on the rate of hydraulic resistances, and, consequently, on the angle of
quarry bottom slope, is diameters of external and internal pipe: the more is difference between diameters of external and
internal pipe, the more is sum of hydraulic resistances. In order to diminish hydraulic resistances inside the geothermal
borehole at diameter of external pipe 300 mm, diameter of internal pipe must make 0,25…0,3 of diameter of external
pipe. Further increase of this relation does not give substantial decrease of pressure losses in geothermal heat
exchanger. At diameter of external pipe of 200 mm, optimum diameter of internal pipe makes 0,35…0,4 of diameter of
external pipe.
Keywords: goaf, geothermal energy, geothermal heat exchanger, higher water plants.
Introduction. Opencast minerals extraction is inevitably accompanied by
anthropogenic transformation of fertile land and formation of anthropogenic
landscapes representing broken relief with active erosion and other unfavorable and
dangerous geomorphologic processes that complicate their practical use.
On the territory of Ukraine the total area of the transformed landscape comprises
about 800,000 ha including over 122,000 ha of quarries [1]. In accordance with
national legislation, opencast workings after their extraction termination shall be
restored up to the condition that is suitable for their further use including agricultural
one. Thus, nowadays the issue of restoration of worked-out quarries and degrade
areas’ return to their initial state is greatly urgent for mineral resource enterprises.
Analyses’ results of recent studies and publications. In mineral resource sphere
there are various possible types of areas utilization affected by mining operations
requiring their preliminary assessment in order to choose their proper use direction
[2].
© O. P. Chepak, V.K. Kostenko, O.L. Zavyalova, 2018
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2018. № 140
167
To restore territories with anthropogenic damages they use such methods as
agricultural, forestry, sanitary and hygienic, building, landscape gardening, and
hydro-economic.
The direction selection takes into account hydrological state, climatic zone, areal
biological variety, economic expediency, purpose, and permitted use.
Worked-out quarries are divided into dry (non-watered), partially watered, and
watered.
After their treatment partially watered and watered quarries are especially
dangerous for people and ecosystems. Such quarries and adjacent damaged territories
can be self-restored however the processes of the initial restorative succession are too
slow. Besides, as a rule, quarry waters are polluted with suspended particles and
characterized by the high mineralization thus requiring purification and desalination.
To solve the problem of intensive restoration of the territory damaged due to
opencast mining operations with the simultaneous purification of quarry waters, the
authors improved the methods of their biological treatment in bio-plateau system with
thermal stabilization of geothermal energy (Fig. 1) [3].
1 – pit wall; 2 – auxiliary dams; 3 – bed; 4 – water inflow; 5 – main dam; 6 – vertical hole collector
«pipe-in-pipe»; 7 – water collector; 8 – higher water plants; 9 – pump
Figure 1 – The scheme of quarry water biological treatment using geothermal energy
The idea of the proposed method includes a bio-plateau purification structure
formation in the gob of the quarry where higher water like common reed grass, reed
mace, etc. plants would be used for quarry water treatment. The plants absorb mineral
substances from water with their roots, stems and leaves. At the same time the root,
submersible and surface cell mass increases, and this, in the course of the cells’
further dying-off and disintegration forms the humus part of the fertile layer.
The debatable question in the connection with the bio-plateau structure operation
is the winter mode of work. To avoid the winter period decrease of water treatment
one should maintain the water temperature on the treatment structure not lower than
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2018. № 140
168
10…12
o
C. To provide such water temperature maintenance in winter within the
specified range the thermal calculation was executed, and the basic parameters of the
proposed technique were determined, and namely: number of holes, their diameter,
and depth.
According to previous thermal calculations it was determined for Balka Mokraya
Quarry in Donetsk Region [4] that for daily heating of 660 cu m of waters (the water
quantity coming to the quarry from the water bearing layer during 24 hours) up to the
temperature of 10
o
C due to geothermal energy 24 geothermal holes shall be drilled
with 200 mm diameter and 76 m depth. The latter need thermal insulation of 20 mm
thick glass foam 25 m deep followed a by 4X13 steel casing installation with 20 mm
wall thickness, and a coaxial plastic pipe of 50 mm diameter and 75 m length. The
space between the casing and the rock mass between 25 and 75 m is to be filled with
heat-conducting mix including up to 50% of graphite powder mass concentration [5].
In such case the daily water flow through the holes will be 396 cub m. The outlet
water temperature equals to 12
o
C. Mixing it with the rest volume of water would
provide the quarry water temperature increase up to 10
o
C.
Considering technical difficulties and high costs of water pumping to holes one
should calculate the basic hydraulic parameters of the bio-plateau to provide its
operation in gravity mode.
Problem statement. The aim of the work is to determine the basic hydraulic
parameters of a geothermal heat exchanger on the ground of conditions discovery of
gravity water passage through the tube system with target sizes.
Findings of investigation. To arrange the work of the bio-plateau in the gravity
mode one should provide the velocity head on the input of the pipe system’s annular
clearance to allow negotiation of friction and form losses by water with its further
going out of the inside pipe to the surface (Fig. 2).
The water velocity at the accepted flow rate of Q =0,001 m
3
/s:
– in the annular channel:
)(
4
22
1
dD
Q
V
, (1)
– in the inside pipe:
22
4
d
Q
V
, (2)
Reynolds number, correspondingly:
1
1
1
)(
Re
dDV
,
2
2
2Re
dV
. (3)
where D – diameter of the outside steel pipe, D =100 mm = 0.1 m; d – diameter of
the inside pipe, d =50 mm = 0.05 m;
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2018. № 140
169
Т1, Т2 – corresponding temperatures of cold water, coming into the hole, and heated one going out
of the hole; V, V1,V2 – flow rates in the bed of the bio-plateau in the out- and inside pipes
correspondingly; D, d – out- and inside pipes diameters; l1, l2 – out- and inside pipes lengths,
Θ – inclination of the bed of the bio-plateau
Figure 2 – The scheme of water flows in the geothermal heat exchanger
The water flow character and calculated dependencies selection is determined
from Re value (when Re≤2320 is laminar, and Re<2320 is turbulent).
The total head losses include form losses, friction losses along the inside pipe as
well as friction losses in the annular channel along the inside wall of the outside pipe
and the outside wall of the inside pipe.
FRFR
n
i
LR hhhР 4321
1
, (4)
where
n
i
LRh
1
– the sum of form losses due to the flow turn at the inlet to and outlet
from the heat exchanger, and the 180
o
turn at the transition from the annular channel
to the inside pipe; FRh 21 – friction losses along the annular channel; FRh 43 – friction
losses along the inside pipe.
The friction losses of the flow along the annular channel include those along the
inside wall of the annular channel, and along the outside wall of the inside pipe.
FR
B
FR
S
FR hhh 21 , (5)
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2018. № 140
170
where
FR
Bh – friction losses along the inside wall of the annular channel;
FR
Sh –
friction losses along the outside wall of the inside pipe.
The friction losses along the inside wall of the annular channel are calculated
using Darcy-Weisbach formula [Bashta, T. M., 1982]:
2
2
111)1( V
D
l
h FR
FR
B
, (6)
where l1 = 76 – the length of the annular channel (the hole depth), m;
)1(
FR – friction
coefficient.
The friction coefficient for the annular channel is determined by Altschul formula
[Steinberg, M. O., 1992]:
25.0
1
)1(
)1( )
Re
68
(11,0
D
eq
FR , (7)
where )1(
eq – equivalent roughness of the annular channel, mm.
The friction losses along the outside wall of the inside pipe are determined using
the formula:
2
2
1122 V
d
l
h FR
FR
S
, (8)
where
)2(
FR
– friction coefficient for the inside pipe walls, m;
25,0
2
)2(
)2( )
Re
68
(11,0
d
eq
FR , (9)
l2 – the length of the inside pipe, l2 = 75 m;
)2(
eq – equivalent roughness of the inner
tube surface, mm.
We assume that the equivalent roughness of the in- and outside walls’ surface of
the inside pipe is equal.
The friction losses along the inside pipe
FRh 43 are determined by the formula:
2
2
2222
43
V
d
l
h FR
FR
, (10)
The form losses are determined by Weisbach formula [Altschul, A. D., 1976]:
2
2
1
V
h
n
i
LR
i
LR
, (11)
where
LR
i – coefficient of the i-th form loss.
The form losses include as follows: the 180° flow turn, the inlet to and the outlet
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2018. № 140
171
from the pipe.
On the ground of reference values [Steinberg, M. O., 1992]: turn= 3.6 (180°
turn); inlet= 1.0 (inlet to the pipe); outlet= 1.0 (outlet from the pipe to the basin).
Physical parameters of water are accepted from reference values [Mikheev, M.
A., 1977]:
– at Т=Т1: density ρ1, kg/m
3
, kinematic viscosity ν1, m
2
/s;
– at Т=Т2: correspondingly, ρ2 and ν2.
The mean water temperature in the annular space is accepted:
2
21 ТТ
Т
, (12)
where Т1 и Т2 – corresponding temperatures of cold water coming into the hole, and
heated one going out of the hole, С;
Calculation:
СТ 5,9
2
127
ρ1 = 1000 kg/m
3
; 1v = 1,33∙10
-6
m
2
s.
At Т2 = 12°С: ρ2 = 999,7 kg/m
3
; 2v = 1,246∙10
-6,
m
2
s с.
)05,01,0(
4
14,3
001,0
22
1
V =0,17 m/s;
22
05,014,3
001,04
V 0,5 m/s
61
1033,1
)05,01,0(17,0
Re 6390>2300;
62
10246,1
05,05,0
Re 20064>2300.
On the ground of reference values [Chugaev, R. R., 1975]:
)1(
eq = 0,07, mm;
)2(
eq
= 0,0058, mm.
Calculation:
25,0)1( )
6390
68
100
07,0
(11,0 FR =0,035
25,0)2( )
20064
68
50
0058,0
(11,0 FR =0,027
2
17,01000
1,0
76
035,0
2
FR
Bh =384,37
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2018. № 140
172
2
17,01000
05,0
75
027,0
2
FR
Sh =585,23
23,58537,38421
FRh =969,6
2
5,07,959
05,0
75
027,0
2
43
FRh =4858,48
As compared to other components the value of the head losses in the
FRh 43 inside
pipe is almost five times higher than the sum losses in the annular space.
2
5,07,959
1
2
17,01000
1
2
17,01000
6,3
222
LRh =186,43
PAР 51,601443,18648,48586,969
Thus, the ΔР = 6014.51 Pа backwater is required at the inlet to the hole.
The flow rate at the inlet to the hole mouth shall equal to:
1000
51,601422
Р
V = 3,5 m/s.
In accordance with Chézy equation:
piRCV , (13)
where С =
g8
– Chézy coefficient; g = 9.81 m/s
2
– acceleration of gravity; λ –
coefficient of the bed roughness, λ = 0.35 – for the channel of irregular profile
contaminated with stones and water plants; ip – piezometric bed inclination (quarry
bottom), ip=sinθ; R – hydraulic radius, m.
W
R , (14)
where W – water section of flow, m
2
; λ – wetted perimeter, m.
The water section of the flow is determined using the formula:
HBW , (15)
where В – river bed width, m; В = 10 m; Н – bed depth, m; Н = 1 m.
The wetted perimeter is determined using the formula:
ВН 2 , (16)
110 W =10 m 102 =12 m
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2018. № 140
173
12
10
R =0,83 m
Calculation: C=
35,0
81,98
=14,97 m
0,5
·s
-1
ip=
83,097,14
5,3
2
2
2
2
RC
V
=0,065;
θ=arcsin(ip)=arcsin 0,065=3,7°=4°
Thus, to provide water supply to the hole in gravity mode for Balka Mokraya
Quarry conditions its bottom shall be designed with at least 4
o
inclination.
The findings obtained are true exclusively for the target parameters of Balka
Mokraya Quarry. In real conditions outside parameters of purification structures may
differ including water consumption, pipes roughness, and bed’s width and depth
having influence upon the values of hydraulic resistances.
Due to the analysis it was determined that one of the main factors influencing the
value of hydraulic resistance and, consequently, the angle of the quarry bottom
inclination is the diameter of inside and outside pipe. So, it would be expedient to
determine the ratio of pipes’ diameters for minimal sum of hydraulic resistances.
For that the assumption was accepted that the hydraulic resistance in the inside pipe
should be approximately equal to the sum of hydraulic resistances in the annular
space. The prevailing dimension is the hole diameter, so calculations were based on
200 and 300 mm diameters of the outside pipe. The corresponding results are
represented in the Fig. 3.
ΔР – head losses, Pа; d/D – ratio of diameters of the in- and outside pipes;
1 – D = 200 mm, 2 – D = 300 mm
Figure 3 – Dynamics of head loss changes due to the diameters ratio of the in- and outside pipes
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2018. № 140
174
On the ground of the graph the conclusion could be made that the larger
difference between the diameters of the inside and outside pipe the greater the sum of
hydraulic resistances. So, to decrease hydraulic resistances within the geothermal
hole with the 300 mm outside pipe diameter the diameter of the inside pipe shall be
0.25… 0.3 of the outside pipe diameter. The further growth of the d/D ratio cannot
provide any substantial decrease of the head losses in the geothermal heat exchanger.
For 200 mm outside pipe diameter the optimal diameter of the inside pipe shall be
0.35…0.4 of the outside pipe diameter.
Conclusion. Based on the calculations it was established that to provide water
supply to the geothermal hole of the biological treatment structure in gravity mode
the bottom of Balka Mokraya Quarry shall be constructed with at least 4
o
inclination.
To reduce hydraulic resistances within the geothermal hole with the 300 mm
outside pipe diameter the diameter of the inside pipe shall be 0.25…0.3 of the outside
pipe diameter. When the diameter of the outside pipe is 200 mm the diameter of the
inside pipe shall be 0.35…0.4 of the diameter of the outside pipe.
–––––––––––––––––––––––––––––––
REFERENCES
1. Podolynny, S. (2016), ―Functional Conversion of granite quarries methodological aspects of architectural and urban planning
solutions‖, Vìsnik Pridnìprovskoï Deržavnoï Akademìï Budìvnictva ta Arhìtekturi, vol. 1(9), pp.66 –75.
2. Kovalenko V. S., Steinzeig R. M. and Gothic T. V. (2003), Rekultivatsiya narushennykh zemel na karyerakh [Reclamation of
disturbed lands in quarries], Izdatelstvo MGGU, Moskva, RU.
3. Kostenko V., Zavyalova E. L. and Chepak O. P. (2014), ―The restoration of biodiversity in mined-out spaces quarries‖, Proc.
of the international forum-competition of young scientists “Problems of subsoil use”, Saint-Petersburg, pp. 131-133.
4. Zavyalova E. L. and Chepak O. P. (2015), ―Determination of parameters of technology of restoration of biological diversity in
the developed space of quarries‖, Proc. of the International scientific and technical conference ―industrial ecology‖, Belarusian
national technical University, Minsk, pp. 78-84
5. Kostenko V. K., Zavyalova O. L., Box I. V., Spinules O. S., Chepak O. P. and Filatov, I. Yu. Donetsk National Technical
University (2014), Sposіb vidobuvannya geotermalnogo tepla [Method of geothermal heat extraction] State Register of Patents of
Ukraine, Kiev, UA, Pat. № 91730
–––––––––––––––––––––––––––––––
About the author
Chepak Olga Petrivna, Doctoral Student in the Department of Nature and Environmental Activity, Donetsk National Technical
University MES of Ukraine, Pokrovsk, Donetsk Region, Ukraine, olha.chepak@donntu.edu.ua
Kostenko Viktor Klimentovuch, Doctor of Technical Sciences (D. Sc.), Professor, Head of the Department of Nature and
Environmental Activity, Donetsk National Technical University MES of Ukraine, Pokrovsk, Donetsk Region, Ukraine,
vk.kostenko@gmail.com
Zavyalova Olena Leonidivna, Candidate of Technical .Sciences (Ph. D.), Associate Professor, Associate Professor in the
Department of Nature and Environmental Activity, Donetsk National Technical University MES of Ukraine, Pokrovsk, Donetsk
Region, Ukraine, elenazavialova@rambler.ru
Про авторів
Чепак Ольга Петрівна, аспірант кафедри природоохоронної діяльності, Донецький національний технічний
університет МОН України, м. Покровськ Донецької обл., Україна, olha.chepak@donntu.edu.ua
Костенко Віктор Климентович, доктор технічних наук, професор, завідувач кафедри природоохоронної діяльності,
Донецький національний технічний університет МОН Україны, м.Покровськ Донецкої обл., Україна, vk.kostenko@gmail.com
Зав'ялова Олена Леонідівна, кандидат технічних наук, доцент, доцент кафедри природоохоронної діяльності,
Донецький національний технічний університет МОН України, м. Покровськ Донецької обл., Україна,
elenazavialova@rambler.ru
_______________________________________
Анотація. Видобуток корисних копалин відкритим способом неминуче супроводжується антропогенною
трансформацією родючих земель, що утруднює їх практичне використовування. Ідея запропонованого способу
полягає у створенні у виробленому просторі кар'єру очисної споруди – біоплато, в якому для очищення кар'єрних
вод використовуватимуться вищі водні рослини, що через коріння, стебла і листя всмоктуватимуть мінеральні
речовини з води. При цьому наростає коренева, підводна і поверхнева клітинна маса, яка в процесі подальшого
відмирання і розкладання кліток утворює гумусну частину родючого шару. У зв'язку з технічними труднощами і
mailto:olha.chepak@donntu.edu.ua
mailto:vk.kostenko@gmail.com
mailto:Ukraine,%20elenazavialova@rambler.ru
mailto:olha.chepak@donntu.edu.ua
mailto:vk.kostenko@gmail.com
mailto:elenazavialova@rambler.ru
ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Геотехнічна механіка. 2018. № 140
175
великими витратами при організації подачі води до свердловини насосом, необхідно визначити основні
гідравлічні параметри біоплато, які дозволять організувати його роботу у режимі самопливу. Мета роботи полягає
у визначенні основних гідравлічних параметрів геотермального теплообмінника на основі розкриття умов
самотечного проходження води через трубчасту систему заданих розмірів. Встановлено, що для організації
подачі води до геотермальної свердловини біоочисної споруди у режимі самопливу, дно кар'єру «Балка Мокра»
необхідно спорудити під кутом не менше 4°. Одним з основних параметрів, що істотно впливають на величину
гідравлічних опорів, отже, і на кут нахилу дна кар'єру, є діаметри зовнішньої і внутрішньої труби. Чим більше
різниця в їх діаметрах, тим сума гідравлічних опорів більше. Для зменшення гідравлічних опорів усередині
геотермальної свердловини при діаметрі зовнішньої труби 300 мм діаметр внутрішньої труби повинен бути рівний
0,25…0,3 від діаметру зовнішньої. Подальше збільшення цього відношення не забезпечує істотного зниження
втрат напору у геотермальному теплообміннику. Для зовнішньої труби діаметром 200 мм, оптимальний діаметр
внутрішньої труби складатиме 0,35…0,4 від діаметру зовнішньої.
Ключові слова: вироблений простір, геотермальна енергія, геотермальний теплообмінник, вищі водні
рослини.
Аннотация. Добыча полезных ископаемых открытым способом неизбежно сопровождается антропогенной
трансформацией плодородных земель, затрудняющей их практическое использование. Идея предложенного
способа заключается в создании в выработанном пространстве карьера очистного сооружения – биоплато, в
котором для очистки карьерных вод, будут использоваться высшие водные растения, через корни, стебли и
листья впитывающие минеральные вещества из воды. При этом нарастает корневая, подводная и
поверхностная клеточная масса, которая в процессе дальнейшего отмирания и разложения клеток образует
гумусовую часть плодородного слоя. В связи с техническими трудностями и большими затратами при
организации подачи воды в скважину насосом необходимо определить основные гидравлические параметры
биоплато, которые позволят организовать его работу в режиме самотека. Цель работы заключается в
определении основных гидравлических параметров геотермального теплообменника на основе раскрытия
условий самотечного прохождения воды через трубчатую систему заданных размеров. Установлено, что для
организации подачи воды в геотермальную скважину биоочистного сооружения в режиме самотека дно карьера
«Балка Мокрая» необходимо соорудить под углом не менее 4°. Одним из основных параметров, существенно
влияющих на величину гидравлических сопротивлений, а значит - и на угол наклона дна карьера, являются
диаметры внешней и внутренней трубы. Чем больше разница в диаметре внешней и внутренней трубы, тем
сумма гидравлических сопротивлений больше. Для уменьшения гидравлических сопротивлений внутри
геотермальной скважины при диаметре внешней трубы 300 мм диаметр внутренней трубы должен быть равен
0,25…0,3 от диаметра внешней. Дальнейшее увеличение этого отношения не обеспечивает существенного
снижения потерь напора в геотермальном теплообменнике. Для внешней трубы диаметром 200 мм,
оптимальный диаметр внутренней трубы составляет 0,35…0,4 от диаметра внешней.
Ключевые слова: выработанное пространство, геотермальная энергия, геотермальный теплообменник,
высшие водные растения.
Стаття надійшла до редакції 30.05. 2018
Рекомендовано до друку д-ром техн. наук Т.В. Бунько
|