Simulation of ITER ICWC scenarios in JET
Encouraging results recently obtained with alternative ion cyclotron wall conditioning (ICWC) in the present-day tokamaks and stellarators have elevated ICWC to the status of one of the most promising techniques available to ITER for routine interpulse conditioning in the presence of the permanent h...
Збережено в:
| Дата: | 2010 |
|---|---|
| Автори: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2010
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/17455 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Simulation of ITER ICWC scenarios in JET / A.I. Lyssoivan, D. Douai, V. Philipps, T. Wauters, S. Brezinsek, R. Koch, V. Kyrytsya, E. Lerche, M.-L. Mayoral, J. Ongena, R.A. Pitts, F.C. Schüller, G. Sergienko, D. Van Eester, T. Blackman, V. Bobkov, E. de la Cal, F. Durodié, E. Gauthier, T. Gerbaud, M. Graham, S. Jachmich, E. Joffrin, A. Kreter, P.U. Lamalle, P. Lomas, F. Louche, M. Maslov, V.E. Moiseenko, I. Monakhov, J.-M. Noterdaeme, M.K. Paul, V. Plyusnin, M. Shimada, M. Tsalas, M. Van Schoor, V.L. Vdovin // Вопросы атомной науки и техники. — 2010. — № 6. — С. 46-50. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-17455 |
|---|---|
| record_format |
dspace |
| spelling |
Lyssoivan, A.I. Douai, D. Philipps, V. Wauters, T. Brezinsek, S. Koch, R. Kyrytsya, V. Lerche, E. Mayoral, M.-L. Ongena, J. Pitts, R.A. Schüller, F.C. Sergienko, G. Van Eester, D. Blackman, T. Bobkov, V. De la Cal, E. Durodié, F. Gauthier, E. Gerbaud, T. Graham, M. Jachmich, S. Joffrin, E. Kreter, A. Lamalle, P.U. Lomas, P. Louche, F. Maslov, M. Moiseenko, V.E. Monakhov, I. Noterdaeme, J.-M. Paul, M.K. Plyusnin, V. Shimada, M. Tsalas, M. Van Schoor, M., Vdovin, V.L. 2011-02-26T20:46:02Z 2011-02-26T20:46:02Z 2010 Simulation of ITER ICWC scenarios in JET / A.I. Lyssoivan, D. Douai, V. Philipps, T. Wauters, S. Brezinsek, R. Koch, V. Kyrytsya, E. Lerche, M.-L. Mayoral, J. Ongena, R.A. Pitts, F.C. Schüller, G. Sergienko, D. Van Eester, T. Blackman, V. Bobkov, E. de la Cal, F. Durodié, E. Gauthier, T. Gerbaud, M. Graham, S. Jachmich, E. Joffrin, A. Kreter, P.U. Lamalle, P. Lomas, F. Louche, M. Maslov, V.E. Moiseenko, I. Monakhov, J.-M. Noterdaeme, M.K. Paul, V. Plyusnin, M. Shimada, M. Tsalas, M. Van Schoor, V.L. Vdovin // Вопросы атомной науки и техники. — 2010. — № 6. — С. 46-50. — Бібліогр.: 16 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/17455 Encouraging results recently obtained with alternative ion cyclotron wall conditioning (ICWC) in the present-day tokamaks and stellarators have elevated ICWC to the status of one of the most promising techniques available to ITER for routine interpulse conditioning in the presence of the permanent high toroidal magnetic field. The paper presents a study of ICWC discharge performance and optimization of the conditioning output in the largest tokamak JET using the standard ICRF heating antenna A2 in a scenario envisaged at ITER full field, BT=5.3 T: on-axis location of the fundamental ICR for deuterium, ω=ωcD+. The perspective of application of the alternative technique in ITER is analyzed using the 3-D MWS electromagnetic code, 1-D RF full wave and 0-D plasma codes. Обнадёживающие результаты по альтернативной ионно-циклотронной (ИЦ) чистке поверхностей вакуумной камеры, полученные недавно на современных токамаках и стеллараторах, выдвинули этот метод в число наиболее вероятных технологий, планирующихся использовать в ITERe между импульсами в присутствии постоянного сильного тороидального магнитно поля. В настоящей работе представлены результаты исследований ВЧ-разряда и его оптимизаци по усилению эффекта чистки в крупнейшем из ныне действующих токамаке JET с использованием стандартных ИЦ A2 антенн. Эксперименты по ВЧ-чистке на JETе были осуществлены в режиме, моделирующем сценарий ИЦ-разряда в токамаке-реакторе ITER, при работе на полном магнитном поле BT=5.3 T и при расположении фундаментального ИЦ-резонанса для дейтерия ω=ωcD+ в центре вакуумной камеры. Перспективы применения альтернативной ВЧ-чистки в ITERе анализируются с помощью численных кодов: 3-D MWS- электромагнитного кода, 1-D ВЧ-кода и 0-D плазменного кода. Обнадійливі результати з альтернативної іонної циклотронної (ІЦ) чистки поверхонь вакуумної камери, отримані останнім часом в сучасних токамаках і стелараторах, висунули цей метод до числа найбільш вірогідних технологій, які планується використовувати в ІТЕРі між імпульсами в присутності постійного сильного тороїдального магнітного поля. В роботі представленo результати дослідження ВЧ-розряду та його оптимізації щодо підсилення ефекту чистки в найбільшому з нині діючих токамаці JET з використанням стандартних ІЦ А2 антен. Експерименти по ВЧ-чищенню на JETі були здійснені в режимі, що моделює сценарій ІЦ-розряду в токамаці-реакторі ITER, при роботі на повному магнітному полі BT=5.3 T та при розміщенні фундаментального ІЦ-резонансу для дейтерію ω=ωcD+ в центрі вакуумної камери. Перспективи застосування альтернативної ВЧ-чистки в ITERі аналізуються за допомогою числових кодів: 3-D MWS- електромагнітного коду, 1-D ВЧ-коду і 0-D плазмового коду. This work was supported by EURATOM and carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України ИТЭР и приложения для термоядерного реактора Simulation of ITER ICWC scenarios in JET Моделирование на JETе сценариев ВЧ-чистки для реактора ITER Моделювання на JETі сценаріїв ВЧ-чистки для реактора ITER Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Simulation of ITER ICWC scenarios in JET |
| spellingShingle |
Simulation of ITER ICWC scenarios in JET Lyssoivan, A.I. Douai, D. Philipps, V. Wauters, T. Brezinsek, S. Koch, R. Kyrytsya, V. Lerche, E. Mayoral, M.-L. Ongena, J. Pitts, R.A. Schüller, F.C. Sergienko, G. Van Eester, D. Blackman, T. Bobkov, V. De la Cal, E. Durodié, F. Gauthier, E. Gerbaud, T. Graham, M. Jachmich, S. Joffrin, E. Kreter, A. Lamalle, P.U. Lomas, P. Louche, F. Maslov, M. Moiseenko, V.E. Monakhov, I. Noterdaeme, J.-M. Paul, M.K. Plyusnin, V. Shimada, M. Tsalas, M. Van Schoor, M., Vdovin, V.L. ИТЭР и приложения для термоядерного реактора |
| title_short |
Simulation of ITER ICWC scenarios in JET |
| title_full |
Simulation of ITER ICWC scenarios in JET |
| title_fullStr |
Simulation of ITER ICWC scenarios in JET |
| title_full_unstemmed |
Simulation of ITER ICWC scenarios in JET |
| title_sort |
simulation of iter icwc scenarios in jet |
| author |
Lyssoivan, A.I. Douai, D. Philipps, V. Wauters, T. Brezinsek, S. Koch, R. Kyrytsya, V. Lerche, E. Mayoral, M.-L. Ongena, J. Pitts, R.A. Schüller, F.C. Sergienko, G. Van Eester, D. Blackman, T. Bobkov, V. De la Cal, E. Durodié, F. Gauthier, E. Gerbaud, T. Graham, M. Jachmich, S. Joffrin, E. Kreter, A. Lamalle, P.U. Lomas, P. Louche, F. Maslov, M. Moiseenko, V.E. Monakhov, I. Noterdaeme, J.-M. Paul, M.K. Plyusnin, V. Shimada, M. Tsalas, M. Van Schoor, M., Vdovin, V.L. |
| author_facet |
Lyssoivan, A.I. Douai, D. Philipps, V. Wauters, T. Brezinsek, S. Koch, R. Kyrytsya, V. Lerche, E. Mayoral, M.-L. Ongena, J. Pitts, R.A. Schüller, F.C. Sergienko, G. Van Eester, D. Blackman, T. Bobkov, V. De la Cal, E. Durodié, F. Gauthier, E. Gerbaud, T. Graham, M. Jachmich, S. Joffrin, E. Kreter, A. Lamalle, P.U. Lomas, P. Louche, F. Maslov, M. Moiseenko, V.E. Monakhov, I. Noterdaeme, J.-M. Paul, M.K. Plyusnin, V. Shimada, M. Tsalas, M. Van Schoor, M., Vdovin, V.L. |
| topic |
ИТЭР и приложения для термоядерного реактора |
| topic_facet |
ИТЭР и приложения для термоядерного реактора |
| publishDate |
2010 |
| language |
English |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Моделирование на JETе сценариев ВЧ-чистки для реактора ITER Моделювання на JETі сценаріїв ВЧ-чистки для реактора ITER |
| description |
Encouraging results recently obtained with alternative ion cyclotron wall conditioning (ICWC) in the present-day tokamaks and stellarators have elevated ICWC to the status of one of the most promising techniques available to ITER for routine interpulse conditioning in the presence of the permanent high toroidal magnetic field. The paper presents a study of ICWC discharge performance and optimization of the conditioning output in the largest tokamak JET using the standard ICRF heating antenna A2 in a scenario envisaged at ITER full field, BT=5.3 T: on-axis location of the fundamental ICR for deuterium, ω=ωcD+. The perspective of application of the alternative technique in ITER is analyzed using the 3-D MWS electromagnetic code, 1-D RF full wave and 0-D plasma codes.
Обнадёживающие результаты по альтернативной ионно-циклотронной (ИЦ) чистке поверхностей вакуумной камеры, полученные недавно на современных токамаках и стеллараторах, выдвинули этот метод в число наиболее вероятных технологий, планирующихся использовать в ITERe между импульсами в присутствии постоянного сильного тороидального магнитно поля. В настоящей работе представлены результаты исследований ВЧ-разряда и его оптимизаци по усилению эффекта чистки в крупнейшем из ныне действующих токамаке JET с использованием стандартных ИЦ A2 антенн. Эксперименты по ВЧ-чистке на JETе были осуществлены в режиме, моделирующем сценарий ИЦ-разряда в токамаке-реакторе ITER, при работе на полном магнитном поле BT=5.3 T и при расположении фундаментального ИЦ-резонанса для дейтерия ω=ωcD+ в центре вакуумной камеры. Перспективы применения альтернативной ВЧ-чистки в ITERе анализируются с помощью численных кодов: 3-D MWS- электромагнитного кода, 1-D ВЧ-кода и 0-D плазменного кода.
Обнадійливі результати з альтернативної іонної циклотронної (ІЦ) чистки поверхонь вакуумної камери, отримані останнім часом в сучасних токамаках і стелараторах, висунули цей метод до числа найбільш вірогідних технологій, які планується використовувати в ІТЕРі між імпульсами в присутності постійного сильного тороїдального магнітного поля. В роботі представленo результати дослідження ВЧ-розряду та його оптимізації щодо підсилення ефекту чистки в найбільшому з нині діючих токамаці JET з використанням стандартних ІЦ А2 антен. Експерименти по ВЧ-чищенню на JETі були здійснені в режимі, що моделює сценарій ІЦ-розряду в токамаці-реакторі ITER, при роботі на повному магнітному полі BT=5.3 T та при розміщенні фундаментального ІЦ-резонансу для дейтерію ω=ωcD+ в центрі вакуумної камери. Перспективи застосування альтернативної ВЧ-чистки в ITERі аналізуються за допомогою числових кодів: 3-D MWS- електромагнітного коду, 1-D ВЧ-коду і 0-D плазмового коду.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/17455 |
| citation_txt |
Simulation of ITER ICWC scenarios in JET / A.I. Lyssoivan, D. Douai, V. Philipps, T. Wauters, S. Brezinsek, R. Koch, V. Kyrytsya, E. Lerche, M.-L. Mayoral, J. Ongena, R.A. Pitts, F.C. Schüller, G. Sergienko, D. Van Eester, T. Blackman, V. Bobkov, E. de la Cal, F. Durodié, E. Gauthier, T. Gerbaud, M. Graham, S. Jachmich, E. Joffrin, A. Kreter, P.U. Lamalle, P. Lomas, F. Louche, M. Maslov, V.E. Moiseenko, I. Monakhov, J.-M. Noterdaeme, M.K. Paul, V. Plyusnin, M. Shimada, M. Tsalas, M. Van Schoor, V.L. Vdovin // Вопросы атомной науки и техники. — 2010. — № 6. — С. 46-50. — Бібліогр.: 16 назв. — англ. |
| work_keys_str_mv |
AT lyssoivanai simulationofitericwcscenariosinjet AT douaid simulationofitericwcscenariosinjet AT philippsv simulationofitericwcscenariosinjet AT wauterst simulationofitericwcscenariosinjet AT brezinseks simulationofitericwcscenariosinjet AT kochr simulationofitericwcscenariosinjet AT kyrytsyav simulationofitericwcscenariosinjet AT lerchee simulationofitericwcscenariosinjet AT mayoralml simulationofitericwcscenariosinjet AT ongenaj simulationofitericwcscenariosinjet AT pittsra simulationofitericwcscenariosinjet AT schullerfc simulationofitericwcscenariosinjet AT sergienkog simulationofitericwcscenariosinjet AT vaneesterd simulationofitericwcscenariosinjet AT blackmant simulationofitericwcscenariosinjet AT bobkovv simulationofitericwcscenariosinjet AT delacale simulationofitericwcscenariosinjet AT durodief simulationofitericwcscenariosinjet AT gauthiere simulationofitericwcscenariosinjet AT gerbaudt simulationofitericwcscenariosinjet AT grahamm simulationofitericwcscenariosinjet AT jachmichs simulationofitericwcscenariosinjet AT joffrine simulationofitericwcscenariosinjet AT kretera simulationofitericwcscenariosinjet AT lamallepu simulationofitericwcscenariosinjet AT lomasp simulationofitericwcscenariosinjet AT louchef simulationofitericwcscenariosinjet AT maslovm simulationofitericwcscenariosinjet AT moiseenkove simulationofitericwcscenariosinjet AT monakhovi simulationofitericwcscenariosinjet AT noterdaemejm simulationofitericwcscenariosinjet AT paulmk simulationofitericwcscenariosinjet AT plyusninv simulationofitericwcscenariosinjet AT shimadam simulationofitericwcscenariosinjet AT tsalasm simulationofitericwcscenariosinjet AT vanschoorm simulationofitericwcscenariosinjet AT vdovinvl simulationofitericwcscenariosinjet AT lyssoivanai modelirovanienajetescenarievvččistkidlâreaktoraiter AT douaid modelirovanienajetescenarievvččistkidlâreaktoraiter AT philippsv modelirovanienajetescenarievvččistkidlâreaktoraiter AT wauterst modelirovanienajetescenarievvččistkidlâreaktoraiter AT brezinseks modelirovanienajetescenarievvččistkidlâreaktoraiter AT kochr modelirovanienajetescenarievvččistkidlâreaktoraiter AT kyrytsyav modelirovanienajetescenarievvččistkidlâreaktoraiter AT lerchee modelirovanienajetescenarievvččistkidlâreaktoraiter AT mayoralml modelirovanienajetescenarievvččistkidlâreaktoraiter AT ongenaj modelirovanienajetescenarievvččistkidlâreaktoraiter AT pittsra modelirovanienajetescenarievvččistkidlâreaktoraiter AT schullerfc modelirovanienajetescenarievvččistkidlâreaktoraiter AT sergienkog modelirovanienajetescenarievvččistkidlâreaktoraiter AT vaneesterd modelirovanienajetescenarievvččistkidlâreaktoraiter AT blackmant modelirovanienajetescenarievvččistkidlâreaktoraiter AT bobkovv modelirovanienajetescenarievvččistkidlâreaktoraiter AT delacale modelirovanienajetescenarievvččistkidlâreaktoraiter AT durodief modelirovanienajetescenarievvččistkidlâreaktoraiter AT gauthiere modelirovanienajetescenarievvččistkidlâreaktoraiter AT gerbaudt modelirovanienajetescenarievvččistkidlâreaktoraiter AT grahamm modelirovanienajetescenarievvččistkidlâreaktoraiter AT jachmichs modelirovanienajetescenarievvččistkidlâreaktoraiter AT joffrine modelirovanienajetescenarievvččistkidlâreaktoraiter AT kretera modelirovanienajetescenarievvččistkidlâreaktoraiter AT lamallepu modelirovanienajetescenarievvččistkidlâreaktoraiter AT lomasp modelirovanienajetescenarievvččistkidlâreaktoraiter AT louchef modelirovanienajetescenarievvččistkidlâreaktoraiter AT maslovm modelirovanienajetescenarievvččistkidlâreaktoraiter AT moiseenkove modelirovanienajetescenarievvččistkidlâreaktoraiter AT monakhovi modelirovanienajetescenarievvččistkidlâreaktoraiter AT noterdaemejm modelirovanienajetescenarievvččistkidlâreaktoraiter AT paulmk modelirovanienajetescenarievvččistkidlâreaktoraiter AT plyusninv modelirovanienajetescenarievvččistkidlâreaktoraiter AT shimadam modelirovanienajetescenarievvččistkidlâreaktoraiter AT tsalasm modelirovanienajetescenarievvččistkidlâreaktoraiter AT vanschoorm modelirovanienajetescenarievvččistkidlâreaktoraiter AT vdovinvl modelirovanienajetescenarievvččistkidlâreaktoraiter AT lyssoivanai modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT douaid modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT philippsv modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT wauterst modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT brezinseks modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT kochr modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT kyrytsyav modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT lerchee modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT mayoralml modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT ongenaj modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT pittsra modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT schullerfc modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT sergienkog modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT vaneesterd modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT blackmant modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT bobkovv modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT delacale modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT durodief modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT gauthiere modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT gerbaudt modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT grahamm modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT jachmichs modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT joffrine modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT kretera modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT lamallepu modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT lomasp modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT louchef modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT maslovm modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT moiseenkove modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT monakhovi modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT noterdaemejm modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT paulmk modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT plyusninv modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT shimadam modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT tsalasm modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT vanschoorm modelûvannânajetíscenaríívvččistkidlâreaktoraiter AT vdovinvl modelûvannânajetíscenaríívvččistkidlâreaktoraiter |
| first_indexed |
2025-11-27T02:35:55Z |
| last_indexed |
2025-11-27T02:35:55Z |
| _version_ |
1850794719522586624 |
| fulltext |
ITER AND FUSION REACTOR ASPECTS
*See the Appendix of F. Romanelli et al., Proc. 22nd Int. FEC Geneva, IAEA (2008).
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2010. № 6.
Series: Plasma Physics (16), p. 46-50.
SIMULATION OF ITER ICWC SCENARIOS IN JET
A.I. Lyssoivan1, D. Douai2, V. Philipps3, T. Wauters1,2, S. Brezinsek3, R. Koch1, V. Kyrytsya1,
E. Lerche1, M.-L. Mayoral5, J. Ongena1, R.A. Pitts4, F.C. Schüller4, G. Sergienko3,
D. Van Eester1, T. Blackman5, V. Bobkov6, E. de la Cal7, F. Durodié1, E. Gauthier2, T. Gerbaud5,
M. Graham5, S. Jachmich1, E. Joffrin2,8, A. Kreter3, P.U. Lamalle4, P. Lomas, F. Louche1,
M. Maslov5, V.E. Moiseenko9, I. Monakhov5, J.-M. Noterdaeme6,10, M.K. Paul3, V. Plyusnin11,
M. Shimada4, M. Tsalas12, M. Van Schoor1, V.L. Vdovin13
and JET EFDA Contributors*
JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB, UK;
1LPP-ERM/KMS, Association Euratom-Belgian State, 1000 Brussels, Belgium, TEC partner;
2CEA, IRFM, Association Euratom-CEA, 13108 St Paul lez Durance, France;
3IEF-Plasmaphysik FZ Jülich, Euratom Association, 52425 Jülich, Germany, TEC partner;
4ITER International Organization, F-13067 St Paul lez Durance, France;
5CCFE/Euratom Fusion Association, Culham Science Centre, OX14 3DB, Abingdon, UK;
6Max-Planck Institut für Plasmaphysik, Euratom Association, 85748 Garching, Germany;
7Laboratorio Nacional de Fusión, Association Euratom-CIEMAT, 28040 Madrid, Spain;
8EFDA-CSU, Culham Science Centre, OX14 3DB, Abingdon, UK;
9Institute of Plasma Physics NSC “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine;
10Gent University, EESA Department, B-9000 Gent, Belgium;
11Instituto de Plasmas e Fusao Nuclear, Association EURATOM-IST, Lisboa, Portugal;
12NCSR ‘Demokritos’, Athens, Greece;
13RRC Kurchatov Institute, Nuclear Fusion Institute, Moscow, Russia
Encouraging results recently obtained with alternative ion cyclotron wall conditioning (ICWC) in the present-day
tokamaks and stellarators have elevated ICWC to the status of one of the most promising techniques available to ITER
for routine interpulse conditioning in the presence of the permanent high toroidal magnetic field. The paper presents a
study of ICWC discharge performance and optimization of the conditioning output in the largest tokamak JET using the
standard ICRF heating antenna A2 in a scenario envisaged at ITER full field, BT=5.3 T: on-axis location of the
fundamental ICR for deuterium, ω=ωcD+. The perspective of application of the alternative technique in ITER is
analyzed using the 3-D MWS electromagnetic code, 1-D RF full wave and 0-D plasma codes.
PACS: 52.25.Jm, 52.35.Hr, 52.40.Fd, 52.40.Hf, 52.50.Qt
1. INTRODUCTION
In ITER and future superconducting fusion devices,
the presence of the permanent, high toroidal magnetic
field will prevent using glow discharge conditioning
technique (GDC) between reactor pulses. An alternative
technique, Ion Cyclotron Wall Conditioning (ICWC),
based on Radio-Frequency (RF) discharge ignition with
conventional ICRF heating antennas in the presence of
B
46
BT, was recently demonstrated in present-day tokamaks
and stellarators (summarized in Ref. [1] and Refs. herein).
The obtained encouraging results have promoted ICWC
to the status of one of the most promising techniques
available to ITER for routine interpulse conditioning of
the first wall, in particular for recovery after disruptions,
isotopic ratio control and fuel removal. The ability to
operate in ICWC mode has recently been confirmed as a
functional requirement of the ITER main ICRF heating
and current drive system [2].
This paper focuses on a study of ICWC in the largest
current tokamak JET using the standard ICRF heating A2
antennas in a scenario envisaged at ITER full field: on-axis
location of the fundamental ICR for deuterium, += cDωω .
To enhance the wall conditioning output, ignition and
sustainment phases of the ICRF discharge have been
optimized in terms of (i) antenna-near zE~ -field generation
(parallel to the BT-field) responsible for the discharge
ignition, (ii) antenna coupling to low plasma density
(~1017 m-3) and (iii) plasma wave excitation/absorption
over the torus in the low density plasmas. Finally, the
application of this alternative technique in ITER is assessed
using the 3-D MWS electromagnetic code, 1-D full wave
RF and 0-D plasma codes.
2. JET A2 ICRF ANTENNA OPERATION
IN PLASMA PRODUCTION MODE
2.1. GENERATION OF ANTENNA-NEAR EZ-FIELD
The ICRF discharge initiation in the presence of BBT-field
results from the absorption of RF energy mainly by the
electrons. The RF zE~ -field is considered to be responsible
for this process [3]. However, in the typical ICRF band
(~20−60 MHz) in the present-size fusion devices, for most of
the antenna zκ -spectrum, the RF waves (cylindrical modes)
cannot propagate in the vacuum torus: 2222
zc κωκ −=⊥ <0,
where ⊥κ is the perpendicular wave-vector, fπω 2= , f is
the RF generator frequency. Even the RF waves with the
longest toroidal wavelength ( zκ =1/R0, R0 is the torus major
radius) or with infinite wavelength ( zκ =0), which satisfy the
propagation condition , can only oscillate locally in
the cross-section in front of the antenna but not propagate
02 >⊥k
along the torus. The perpendicular wavelength of such waves
is still larger than the present-day torus size.
Hence, the neutral gas breakdown and initial ionization
may only occur locally at the antenna-near zE~ -field.
In the general case of a poloidal loop-type ICRF
antenna with a tilted Faraday shield (FS), the RF zE~ -field
in vacuum can be induced electrostatically and
inductively. The electrostatic mechanism results from the
RF potential difference between the central conductor and
the side parts of the antenna box (side protection RF
limiters). The inductive mechanism results from the RF
voltage induced between the FS rods by the time-varying
magnetic flux [4]. Such a simplified description of the
antenna-near zE~ -field in vacuum was found in a good
agreement with numerical simulations done for the real
antenna configurations (JET A2 antenna [5]) using the 3D
MWS electromagnetic code [6] as shown in Fig. 1.
Fig.1. Ez-field simulation for the JET A2 antenna with
3-D MWS code (f=30 MHz, antenna straps in dipole-
phasing, PRF-input=1 W) [7]
The basic process leading to the neutral gas
breakdown and initial ionization is the oscillation of the
electrons along the static magnetic field lines under the
action of the non-homogeneous antenna-near zE~ -field.
An analysis of the parallel equation of motion for
electrons in terms of the Mathieu equation [8] revealed
that the electrons perform complex motions: linear fast
oscillations under the action of the Lorentz force
)(~)( tiexpEmeF zeLor ω= and non-linear slow motions
under the action of the RF ponderomotive force
)~()4(
222
zzepnd EmeF ∇−= ω . The RF energy can be
transferred to the electrons only through random
collisions with gas molecules, atoms or ions. If the
oscillation energy of the electrons exceeds the ionization
potential for molecules iezevm ε≥22 , gas ionization can
proceed. This inequality provides a lower limit to the zE~ -
field required for neutral gas RF breakdown. The RF
ponderomotive potential does not vanish near the antenna
surface if the RF waves do not propagate in the torus. For
the electrons, this potential may have two different
effects: keep them trapped in the RF potential wells for
many RF periods helping the ionization process or just
repel them out from the antenna area preventing the
ionization. The latter regime is typical for very high
amplitude of the antenna RF field, when the stability
parameter for the Mathieu equation zez LmEe 2~ ωε =
meets the condition for unstable solutions [8, 9]:
or 221/4 εε −≥ 0.183/4)13( ≈−>ε . Here
)~(~2 dzEdEL zzz = is the parallel length scale of the
ponderomotive potential.
The stability threshold for the Mathieu equation
0.183~ 2 ≈zez LmEe ω (1)
may be considered as a more refined upper limit to the
zE~ -field above with which the concept of a
"ponderomotive force" becomes broken. Thus, the neutral
gas breakdown and initial ionization will be efficient
when the electrons are trapped in the antenna RF potential
wells for many periods and when the amplitude of the
antenna electric field meets the boundary condition:
eLmrEme zezie /0.183)(~))(2 /( 21/2 ωεω ≤≤ . (2)
It should be noted that the definition of the upper limit in
terms of the Mathieu equation stability parameter (1)
lowers the -field threshold with a factor of ~5
compared to the alternative condition of balance between
the ponderomotive and Lorentz forces, F
zE~
pnd=FLor [4] and
looks more correct having in mind that Fpnd is derived by
means of a Taylor-expansion which is only valid for cases
where Fpnd<<FLor.
2.2. ANTENNA SAFETY CONSIDERATIONS
AND ICWC OPERATIONAL WINDOWS
The major concern for ICRF antenna operation in
plasma production mode is to prevent the occurrence of
deleterious arcing events and plasma ignition inside the
antenna box. Let’s analyze the problem in terms of radial
location of the boundary ignition condition (2). In the
non-propagating case, the amplitude of -field
exponentially decays in the antenna-near region:
zE~
)()0(~)(~ rkexpErE zzz Δ−= . Here kz represents the inverse
decay-length of the near-field. The -field pattern for 4-
stap antenna as a function of the phase in the current
straps is shown in Fig. 2.
zE~
0 0.5 1.0 1.5L [ m ]z
0
4
8
12
16
0 0.5 1.0 1.5
0
1
2
3
4
5
(a)
(b)
E
[
v
/m
]
z
E
[
v
/m
]
z
monopole dipole
L mono
Ldipo
Fig.2. Ez-field pattern simulated with the MWS code for
4-strap antenna at r= 5 cm (a) and r=21 cm (b) from the
current strap surface for monopole (green) and dipole
(red) phasing, f=40 MHz, PRF-input=1.0 W
It is clearly seen that operation of the 4-strap antenna in
the monopole phasing enlarges toroidal size of the
47
antenna-near RF potential well compared to the dipole
phasing. As a result, the -field amplitude decays in the
radial direction with larger decay-length.
zE~
The impact of this effect on formation of the gas
breakdown region in the radial direction is illustrated for
the JET A2 antenna in Fig. 3.
0 0.1 0.2 0.3 0.4 0.5
r [m]
103
104
105
Ez
[V
/m
]
(b)40 MHz
monopoledipole
0 0.1 0.2 0.3 0.4 0.5
r [m]
103
104
105
Ez
[V
/m
]
(a)25 MHz
monopoledipole
Fig.3. Boundary conditions for gas breakdown (He) in the
radial direction for JET A2 antenna for monopole/dipole
phasing at f=25 MHz (a) and f=40 MHz (b), both at at
VRF-ant=10 kV
48
Several features should be mentioned: (i) safe operation at
both low (25 MHz) and high (40 MHz) frequencies may
be possible: updated condition (2) indicates breakdown
zone formation outside of the antenna box, (ii) the
monopole phasing at any frequencies should be
considered as a high priority operation regime: larger
breakdown area (in the (Ez-r)-parameter space) is more
remote from the antenna surface compared to the dipole
phase, (iii) operation at lower frequency (25 MHz) may
be beneficial: ignition area is more shifted away from the
antenna box.
Taking into account (i) the ITER IO request to
demonstrate the ICWC feasibility in conditions similar to
the ITER full field operation (BT=5.3 T and 40–55 MHz
frequency band for the ITER ICRF system) and (ii) the
JET safety aspects and operational constrants, the
following JET operational window for ICWC has been
elaborated and successfully tested.
1. ITERJET TMHzTMHz 3.5/403.3/25 ≈ for on-axis
resonance condition ω=ωcD+. The selected frequency
f=25 MHz satisfied also the safety aspects of the A2
antenna operation: (i) shifted the ignition area far away
from the antenna box (Fig.3) and (ii) allowed to avoid low
voltage arcing at the vacuum transmission line (VTL)
bellows.
2. The main transmission line (MTL) RF voltage was
limited to 20 kV.
3. In order to be sure that the RF generator can register
arcs, the RF power was applied to vacuum before the gas
was injected.
4. To avoid antenna cross-coupling, we operated 2 of the
four JET A2 antennas (C and D) at mixed frequencies
(fA2C=26.06 MHz, fA2D=25.21 MHz) but not at mixed
phasing. The highest priority phasings for the antenna
straps were monopole (0000) and super-dipole (00ππ).
5. Working gas was 4He and D2 injected simultaneously
or independently. This was allowed only at pressures up
to 2×10-5 mbar to avoid arcing inside the antenna box and
vacuum transmission line (VTL).
6. To extend the RF conditioning plasma in vertical
direction and push it down towards the divertor area [10],
an additional vertical magnetic field BV between 3 and
30 mT in the "barrel" shaped configuration was also
applied.
2.3. ANTENNA COUPLING TO LOW DENSITY
ICWC PLASMAS
After the first (gas local breakdown) phase of the RF
discharge, as soon as ωpe becomes of the order of ω (it
occurs at a very low density ~ (5×1012)…(5×1013) m-3 in
the frequency range 20…60 MHz), plasma waves can
start propagating in a relay-race regime governed by the
antenna κz-spectrum, causing further space ionization of
the neutral gas and plasma build-up in the torus (plasma
phase). Because of the very low plasma temperature
during the ionization phase (Te~3…5 eV [1]), the RF
power is expected to be dissipated mostly collisionally
either directly or through conversion to ion Bernstein
waves (IBW) if ciωω > or by conversion at the Alfvén
resonance if ciωω < . Such a non-resonant coupling
allows RF plasma production at any BBT.
The described plasma production scheme is aimed on
performance of a sustained ICWC discharge and assumes
that ICRF antenna couples the RF power to plasma with
high enough efficiency during all phases of the discharge.
Here we define the antenna-plasma coupling efficiency as
a fraction of the generator power coupled to the plasma,
GRFplRF PP −−=η . The conventional ICRF antenna is
designed for dense (ne>1019 m-3) target plasma heating
through excitation of Fast Wave (FW) with high coupling
efficiency (η>0.9). Being operated in the RF plasma
production mode with the "plasma heating settings" (high
kz-spectrum of the radiated RF power), the conventional
ICRF antenna gives evidence of poor coupling
(η0~0.2…0.3) to the low density RF plasmas
ne~1016…1017 m-3, at which FW is typically non-
propagating [11]. The present-day solutions for ICRF
antenna enhanced coupling in the ICWC mode are based
on the development of scenarios with FW close to
propagation or propagating in low density plasmas [7]:
(i) antenna phasing to low kz-spectrum of the radiated RF
power, (ii) FW-SW-IBW mode conversion (MC) in RF
plasmas with two ion species, (iii) operation at High
Cyclotron Harmonics (HCH), typically ciωω 10≈ . It
should be noted that the density threshold for the FW
excitation is determined by the LFS cut-off for FW
( ) [12]: ciFW
ωωκ >=⊥ ,02
2
2
22
2 11 ci
ci
z
pi
c ω
ω
ω
ω
κω ⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−= . (3)
For the case of JET A2 antenna (f=25 MHz, BT=3.3 T,
deuterium), it results in a dramatic reduction (about two
orders) in the threshold density for FW excitation on
changing the phase between RF current in the antenna
straps from dipole to monopole (Fig. 4). The recent ICWC
experiments have clearly demonstrated that indeed
antenna coupling efficiency strongly increased with
monopole phasing ( 0ηη ≈3) at which FW excitation was
possible (Fig.4).
0 1 2 3 4 5 6 7
0.1
0.2
0.3
0.4
0.5
0.6
0.7
An
te
nn
a
co
up
lin
g
ef
fic
ien
cy
[r.
u.
]
1017
1018
1019FW cut-off density
k [m ]-1
n
[m
]
e
-3
ICWC plasma edge density
monopole
super-dipole
dipole
49
z
Fig.4. JET A2 antenna coupling to low density
(ne(0)≈1.5×1017 m-3) RF plasmas as a function of antenna
phasing and threshold density for FW excitation
(f=25 MHz, deuterium, BT=3.3 T)
3. ICWC PLASMA PERFORMANCE
AND OPTIMIZATION OF WALL
CONDITIONING OUTPUT
By operating the JET A2 antennas in plasma
production mode in the MC scenario [7] at the monopole
phase we obtained reliable ignition of the working gas
(D2, He or their mixtures) and ICWC discharge formation
with improved homogeneity ( en ≈(1-3)×1017 m-3) in
conditions relevant to ITER full field, i.e. on-axis
resonance += cDωω (Fig. 5). It is clearly seen from the
FIR interferometer signals that RF plasma was detected in
all interferometer channels, showing that the created RF
plasma was present through the total cross-section of the
vessel, from LFS (antenna side, channels 4-3) towards
HFS (channels 2-1).
JET #78583
P [ MW ]RF
He D
pressure [10 Pa]-3
4 6 8 10
Time [s]
0
0.1
0.2
gas [10 el/s]21
0
1
2
3
0
1
2
3
0
1
2
3
0
2
4
0
1
2
3
2
LFS
HFS(n l)-1 [10 m ]e
17 -2
(n l)-2 [10 m ]e
17 -2
(n l)-3 [10 m ]e
17 -2
(n l)-4 [10 m ]e
17 -2
2
4
6
0
4 2
Fig.5. Typical performance of ICWC discharge in JET with
two A2 antennas operated in monopole phasing in conditions
similar to ITER full field: f=25 MHz,
PRF-G-max ≈ 400 kW, η ≈ 0.6, BT = 3.3 T, ptot=2×10-3 Pa, gas
composition - D2 : He ≈ 0.85 : 0.15
The conditioning output was studied by measuring the
overall outgassing rate of several marker gases using
mass spectrometry, spectroscopy in the main vessel and
optical penning gauges in the divertor. We define the
outgassing rate of given species as the quantity [7]:
eidRR pnkkVspdtdpVtQ )()/(~)( ++⋅+ . (4)
Here V is the volume, p and s are the partial pressure of
the given mass and its pumping speed, respectively,
and are the dissociation and ionization rates and is
the electron density. The pressure and RF coupled power
were adjusted to optimize the efficiency of D
dk
ik en
2-ICWC
discharges for fuel removal by isotopic (D-H) exchange.
The best conditions to maximize the ratio between
outpumping (H) and retention (D) atoms without lowering
the H release were found to be high coupled power
(~ 250 kW) achieved with the monopole phasing for both
antennas and low pressure (≈ 2×10-3 Pa). The efficiency
for fuel removal by isotopic exchange was assessed using
the following procedure: two hours H2-GDC was operated
to preload the walls with ≈ 4×1023 H-atoms, after which
the JET cryopumps were regenerated. Then, 8 identical
D2-ICWC discharges (p = 2×10-3 Pa, BT = 3.3 T,
BBV = 30 mT, 9 s duration) have been repeated, the
cryopumps were again regenerated and the gas released
from the regeneration of cryopumps was analyzed by gas
chromatography [13]. The evolution of the isotopic ratio
is given on Figure 6 as a function of the cumulated ICWC
discharge time. A noticeable increase of the isotopic ratio
D/(D+H) between 40% and 60% in a cumulated discharge
time of 72 s was achieved in the main vessel and in the
divertor chamber. The following averaged isotope
exchange efficiency was achieved: Hautgassed/Dimplanted≈1/3.
0 10 20 30 40 50 60 700
0.2
0.4
0.6
0.8
1
cumulated ICWC discharge time [ s ]
D/
(H
+D
) [
r.
u.
]
from divertor Penning
from mid-plane spectroscopy
Fig.6. Isotopic ratio as measured by optical penning gauges in
the divertor and from midplane spectroscopy as a function of
the cumulated D2 ICWC discharge time in JET [13]
4. ICWC EXTRAPOLATION TO ITER
As was mentioned in Section 2, the electromagnetic
waves can not propagate along the vacuum vessel in the
present-day tokamaks or stellarators in the typical ICRF
band (~20…60 MHz) due to small cross-section size. It
results in locally occurring neutral gas breakdown and
initial ionization at the antenna-near zE~ -field.
Modeling of the electromagnetic wave propagation in
ITER-like D-shaped vacuum vessel was undertaken with
the 3-D MWS code. The eigenmode solver predicts that a
threshold frequency for the propagation and eigenmode
formation of the E-wave (containing zE~ -field in the
direction of propagation) are within the frequency range
≈43…44 MHz. Remarkably, the found frequencies suit well
to the settled frequency band for the ITER ICRF H&CD
system. Further analysis showed that the predicted frequency
for continuous field distribution (f=42.9807 MHz, Fig.7)
corresponds to a threshold frequency of the E010-mode
propagation along the cylindrical waveguide [14]:
)m(7.114)MHz(
010 effwEc rf −− = . Here is the
effective radius of a circle with the area equivalent to the
given D-shaped cross-section:
effwr −
hveffw rrr 91.0≈− , where
vr ≈3.94 m and ≈2.2 m are the ITER vessel vertical and
horizontal radii, respectively. The discovered effect
indicates that the gas breakdown and initial ionization
may occur in the ITER vessel simultaneously over the
torus if ICRF H&CD system is tuned to torus
eigenfrequncies, thus facilitating and making safer the
operation of ITER antenna in the ICWC mode.
hr
50
Fig.7. 3-D MWS eigenmode solver: Ez-field distribution along
the torus in ITER-like vacuum vessel at a cut-off frequency for
the E010-mode propagation (fE010=42.98 MHz, all eigenmode
solutions are normalized to 1 Joule total stored energy)
An 0-D plasma code [15] was used to simulate a scale
of the RF power necessary to produce and sustain ICWC
hydrogen/deuterium plasmas in ITER-size machine
( pla ≈2.4 m, R0=6.2 m) in the presence of BBT=5.3 T in the
pressure range p ≈ (2…8)×10 Pa. The code predicts that
RF plasmas with density of n
-2
e ≈ (1…5)×10 m ,
temperature T
17 -3
e ≈ 1…2 eV and ionization degree
γi≈0.05…0.10 can be produced with the RF power
coupled to the electrons in the range Ppl-ITER≈
0.3…1.5 MW depending on the gas pressure. Assuming
an "optimistic" antenna coupling efficiency η≥0.5 at the
monopole-phasing, this corresponds to the generator
power range PG-ITER ≈ 0.6…3.0 MW. The empirical direct
extrapolation from the TEXTOR and JET ICWC data
(coupled power Ppl-TEXTOR≈12…30 kW, Ppl-JET≈230 kW,
similar power density scaling and antenna coupling) gives
a power of Ppl-ITER≈1…2 MW and PG-ITER≈2…4 MW,
respectively.
The TOMCAT 1-D RF code [16] predicts that a more
homogeneous power absorption by the electrons over the
ITER vessel may be achieved in the MC scenario at
intermediate BT=3.6 T with two different frequencies
(f1=40 MHz and f2=48 MHz) and low kz-spectrum (π/3-, π/6-
or monopole-phasing between the RF currents in the toroidally
adjacent antenna modules). Performance of the MC scenario at
half-field (BT=2.65 T) or at full field (BT=5.3 T) may result in
less homogeneous ICWC discharge. However, plasma
production with the antenna phased to low kz-spectrum of the
radiated RF power looks beneficial: (i) FW is already
propagating in low density plasmas; (ii) better antenna
coupling is foreseen; (iii) larger fraction of the coupled RF
power may be transported to the antenna distant (>2 m) mode
conversion layer.
This work was supported by EURATOM and carried out
within the framework of the European Fusion Development
Agreement. The views and opinions expressed herein do not
necessarily reflect those of the European Commission.
REFERENCES
1. E. de la Cal, E. Gauthier // Plasma Phys. Control. Fusion.
2005, v. 47, p. 197-218.
2. ITER Team. ITER Design Change Request. DCR-080.
2007.
3. V.E. Golant // Usp. Fiz. Nauk. 1958, v. 65, p. 39-86.
4. A. Lyssoivan, et al.: Report LPP-ERM/KMS. 1998, v. 114.
5. A. Kaye, et al.// Fusion Eng. Des. 1994, v. 24, p. 1.
6. T. Weiland, M. Timm, I. Munteanu // IEEE Microwave
Magazine. 2008, v. 9 (6), p. 62-75.
7. A. Lyssoivan, et al.// 19th Int. Conf. on Plasma Surface
Interactions. San Diego, 2010, Paper P2-2.
8. M.D. Carter, et al.// Nucl. Fusion 1990, v. 30, p. 723-730.
9. A. Lyssoivan, et al.// Problems of Atomic Science and
Technology. Ser.”Plasma Physics” (13). 2007, N 1, p. 30-
34.
10. A. Lyssoivan, et al.//Journal of Nuclear Materials. 2009,
v. 390-391, p. 456-460.
11. A. Lyssoivan, et al.// Journal of Nuclear Materials. 2005,
v. 337-339, p. 456-460.
12. T. Stix. Waves in Plasmas. N.Y.: “Springer-Verlag”, 1992.
13. D. Douai, et al. // 19th Int. Conf. on Plasma Surface
Interactions. San Diego, 2010, Paper I-09.
14. S. Ramo, J.R. Whinnery, T. Van Duzer. Fields and Waves
in Communication Electronics. New York–London–
Sydney: “John Wiley & Sons”, 1965.
15. J. Buermans and T. Matthys. Diploma Thesis. ERM/KMS,
Brussels. 2006.
16. D. Van Eester, R. Koch // PPCF. 1998, v.40, p.1949-1975.
Article received 29.09.10
МОДЕЛИРОВАНИЕ НА JETе СЦЕНАРИЕВ ВЧ-ЧИСТКИ ДЛЯ РЕАКТОРА ITER
А.И. Лысойван и др.
Обнадёживающие результаты по альтернативной ионно-циклотронной (ИЦ) чистке поверхностей вакуумной камеры,
полученные недавно на современных токамаках и стеллараторах, выдвинули этот метод в число наиболее вероятных
технологий, планирующихся использовать в ITERe между импульсами в присутствии постоянного сильного
тороидального магнитно поля. В настоящей работе представлены результаты исследований ВЧ-разряда и его
оптимизаци по усилению эффекта чистки в крупнейшем из ныне действующих токамаке JET с использованием
стандартных ИЦ A2 антенн. Эксперименты по ВЧ-чистке на JETе были осуществлены в режиме, моделирующем
сценарий ИЦ-разряда в токамаке-реакторе ITER, при работе на полном магнитном поле BT=5.3 T и при расположении
фундаментального ИЦ-резонанса для дейтерия ω=ωcD+ в центре вакуумной камеры. Перспективы применения
альтернативной ВЧ-чистки в ITERе анализируются с помощью численных кодов: 3-D MWS- электромагнитного кода,
1-D ВЧ-кода и 0-D плазменного кода.
МОДЕЛЮВАННЯ НА JETі СЦЕНАРІЇВ ВЧ-ЧИСТКИ ДЛЯ РЕАКТОРА ITER
А.І. Лисойван та ін.
Обнадійливі результати з альтернативної іонної циклотронної (ІЦ) чистки поверхонь вакуумної камери, отримані
останнім часом в сучасних токамаках і стелараторах, висунули цей метод до числа найбільш вірогідних технологій, які
планується використовувати в ІТЕРі між імпульсами в присутності постійного сильного тороїдального магнітного поля.
В роботі представленo результати дослідження ВЧ-розряду та його оптимізації щодо підсилення ефекту чистки в
найбільшому з нині діючих токамаці JET з використанням стандартних ІЦ А2 антен. Експерименти по ВЧ-чищенню на
JETі були здійснені в режимі, що моделює сценарій ІЦ-розряду в токамаці-реакторі ITER, при роботі на повному
магнітному полі BT=5.3 T та при розміщенні фундаментального ІЦ-резонансу для дейтерію ω=ωcD+ в центрі вакуумної
камери. Перспективи застосування альтернативної ВЧ-чистки в ITERі аналізуються за допомогою числових кодів: 3-D
MWS- електромагнітного коду, 1-D ВЧ-коду і 0-D плазмового коду.
|