Erosion mechanisms and erosion products in tungsten targets exposed to plasma heat loads relevant to ELMS and mitigated disruptions in ITER
Tungsten targets were irradiated by intense plasma streams at plasma gun facilities MK-200UG and QSPA-T. The targets were tested by plasma loads relevant to Edge Localised Modes (ELM) and mitigated disruptions in ITER. Material erosion caused by melt motion and by emission of droplets has been studi...
Saved in:
| Date: | 2010 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2010
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/17456 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Erosion mechanisms and erosion products in tungsten targets exposed to plasma heat loads relevant to ELMS and mitigated disruptions in ITER / V.M. Safronov, N.I. Arkhipov, N.S. Klimov, I.S. Landman, D.S. Petrov, V.L. Podkovyrov, I.M. Poznyak, D.A. Toporkov, A.M. Zhitlukhin // Вопросы атомной науки и техники. — 2010. — № 6. — С. 51-53. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-17456 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-174562025-02-09T15:11:57Z Erosion mechanisms and erosion products in tungsten targets exposed to plasma heat loads relevant to ELMS and mitigated disruptions in ITER Механизмы и продукты эрозии вольфрамовых мишеней при тепловых плазменных нагрузках, характерных для ELM и ослабленных срывов в ITERе Механізми і продукти ерозії вольфрамових мішеней при теплових плазмових навантаженнях, характерних для ELM і ослаблених зривів в ITERі Safronov, V.M. Arkhipov, N.I. Klimov, N.S. Landman, I.S. Petrov, D.S. Podkovyrov, V.L. Poznyak, I.M. Toporkov, D.A. Zhitlukhin, A.M. ИТЭР и приложения для термоядерного реактора Tungsten targets were irradiated by intense plasma streams at plasma gun facilities MK-200UG and QSPA-T. The targets were tested by plasma loads relevant to Edge Localised Modes (ELM) and mitigated disruptions in ITER. Material erosion caused by melt motion and by emission of droplets has been studied. Мишени из вольфрама были подвергнуты воздействию интенсивных потоков плазмы на плазменных ускорителях МК-200UG и КСПУ-Т. Испытания проводились при плазменных нагрузках, характерных для ELMов и ослабленных срывов в ITERe. Исследована эрозия материала, обусловленная движением расплава и капельным разбрызгиванием. Мішені з вольфраму були піддані впливу інтенсивних потоків плазми на плазмових прискорювачах МК-200UG і КСПУ-Т. Іспити проводилися при плазмових навантаженнях, характерних для ELMів і ослаблених зривів в ITERі. Досліджено ерозію матеріалу, що обумовлена рухом розплаву і краплинним розбризкуванням. The work is supported by RFBR grant No 09-02-13562. 2010 Article Erosion mechanisms and erosion products in tungsten targets exposed to plasma heat loads relevant to ELMS and mitigated disruptions in ITER / V.M. Safronov, N.I. Arkhipov, N.S. Klimov, I.S. Landman, D.S. Petrov, V.L. Podkovyrov, I.M. Poznyak, D.A. Toporkov, A.M. Zhitlukhin // Вопросы атомной науки и техники. — 2010. — № 6. — С. 51-53. — Бібліогр.: 9 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/17456 en application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
ИТЭР и приложения для термоядерного реактора ИТЭР и приложения для термоядерного реактора |
| spellingShingle |
ИТЭР и приложения для термоядерного реактора ИТЭР и приложения для термоядерного реактора Safronov, V.M. Arkhipov, N.I. Klimov, N.S. Landman, I.S. Petrov, D.S. Podkovyrov, V.L. Poznyak, I.M. Toporkov, D.A. Zhitlukhin, A.M. Erosion mechanisms and erosion products in tungsten targets exposed to plasma heat loads relevant to ELMS and mitigated disruptions in ITER |
| description |
Tungsten targets were irradiated by intense plasma streams at plasma gun facilities MK-200UG and QSPA-T. The targets were tested by plasma loads relevant to Edge Localised Modes (ELM) and mitigated disruptions in ITER. Material erosion caused by melt motion and by emission of droplets has been studied. |
| format |
Article |
| author |
Safronov, V.M. Arkhipov, N.I. Klimov, N.S. Landman, I.S. Petrov, D.S. Podkovyrov, V.L. Poznyak, I.M. Toporkov, D.A. Zhitlukhin, A.M. |
| author_facet |
Safronov, V.M. Arkhipov, N.I. Klimov, N.S. Landman, I.S. Petrov, D.S. Podkovyrov, V.L. Poznyak, I.M. Toporkov, D.A. Zhitlukhin, A.M. |
| author_sort |
Safronov, V.M. |
| title |
Erosion mechanisms and erosion products in tungsten targets exposed to plasma heat loads relevant to ELMS and mitigated disruptions in ITER |
| title_short |
Erosion mechanisms and erosion products in tungsten targets exposed to plasma heat loads relevant to ELMS and mitigated disruptions in ITER |
| title_full |
Erosion mechanisms and erosion products in tungsten targets exposed to plasma heat loads relevant to ELMS and mitigated disruptions in ITER |
| title_fullStr |
Erosion mechanisms and erosion products in tungsten targets exposed to plasma heat loads relevant to ELMS and mitigated disruptions in ITER |
| title_full_unstemmed |
Erosion mechanisms and erosion products in tungsten targets exposed to plasma heat loads relevant to ELMS and mitigated disruptions in ITER |
| title_sort |
erosion mechanisms and erosion products in tungsten targets exposed to plasma heat loads relevant to elms and mitigated disruptions in iter |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2010 |
| topic_facet |
ИТЭР и приложения для термоядерного реактора |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/17456 |
| citation_txt |
Erosion mechanisms and erosion products in tungsten targets exposed to plasma heat loads relevant to ELMS and mitigated disruptions in ITER / V.M. Safronov, N.I. Arkhipov, N.S. Klimov, I.S. Landman, D.S. Petrov, V.L. Podkovyrov, I.M. Poznyak, D.A. Toporkov, A.M. Zhitlukhin // Вопросы атомной науки и техники. — 2010. — № 6. — С. 51-53. — Бібліогр.: 9 назв. — англ. |
| work_keys_str_mv |
AT safronovvm erosionmechanismsanderosionproductsintungstentargetsexposedtoplasmaheatloadsrelevanttoelmsandmitigateddisruptionsiniter AT arkhipovni erosionmechanismsanderosionproductsintungstentargetsexposedtoplasmaheatloadsrelevanttoelmsandmitigateddisruptionsiniter AT klimovns erosionmechanismsanderosionproductsintungstentargetsexposedtoplasmaheatloadsrelevanttoelmsandmitigateddisruptionsiniter AT landmanis erosionmechanismsanderosionproductsintungstentargetsexposedtoplasmaheatloadsrelevanttoelmsandmitigateddisruptionsiniter AT petrovds erosionmechanismsanderosionproductsintungstentargetsexposedtoplasmaheatloadsrelevanttoelmsandmitigateddisruptionsiniter AT podkovyrovvl erosionmechanismsanderosionproductsintungstentargetsexposedtoplasmaheatloadsrelevanttoelmsandmitigateddisruptionsiniter AT poznyakim erosionmechanismsanderosionproductsintungstentargetsexposedtoplasmaheatloadsrelevanttoelmsandmitigateddisruptionsiniter AT toporkovda erosionmechanismsanderosionproductsintungstentargetsexposedtoplasmaheatloadsrelevanttoelmsandmitigateddisruptionsiniter AT zhitlukhinam erosionmechanismsanderosionproductsintungstentargetsexposedtoplasmaheatloadsrelevanttoelmsandmitigateddisruptionsiniter AT safronovvm mehanizmyiproduktyéroziivolʹframovyhmišenejpriteplovyhplazmennyhnagruzkahharakternyhdlâelmioslablennyhsryvovvitere AT arkhipovni mehanizmyiproduktyéroziivolʹframovyhmišenejpriteplovyhplazmennyhnagruzkahharakternyhdlâelmioslablennyhsryvovvitere AT klimovns mehanizmyiproduktyéroziivolʹframovyhmišenejpriteplovyhplazmennyhnagruzkahharakternyhdlâelmioslablennyhsryvovvitere AT landmanis mehanizmyiproduktyéroziivolʹframovyhmišenejpriteplovyhplazmennyhnagruzkahharakternyhdlâelmioslablennyhsryvovvitere AT petrovds mehanizmyiproduktyéroziivolʹframovyhmišenejpriteplovyhplazmennyhnagruzkahharakternyhdlâelmioslablennyhsryvovvitere AT podkovyrovvl mehanizmyiproduktyéroziivolʹframovyhmišenejpriteplovyhplazmennyhnagruzkahharakternyhdlâelmioslablennyhsryvovvitere AT poznyakim mehanizmyiproduktyéroziivolʹframovyhmišenejpriteplovyhplazmennyhnagruzkahharakternyhdlâelmioslablennyhsryvovvitere AT toporkovda mehanizmyiproduktyéroziivolʹframovyhmišenejpriteplovyhplazmennyhnagruzkahharakternyhdlâelmioslablennyhsryvovvitere AT zhitlukhinam mehanizmyiproduktyéroziivolʹframovyhmišenejpriteplovyhplazmennyhnagruzkahharakternyhdlâelmioslablennyhsryvovvitere AT safronovvm mehanízmiíproduktierozíívolʹframovihmíšenejpriteplovihplazmovihnavantažennâhharakternihdlâelmíoslablenihzrivívviterí AT arkhipovni mehanízmiíproduktierozíívolʹframovihmíšenejpriteplovihplazmovihnavantažennâhharakternihdlâelmíoslablenihzrivívviterí AT klimovns mehanízmiíproduktierozíívolʹframovihmíšenejpriteplovihplazmovihnavantažennâhharakternihdlâelmíoslablenihzrivívviterí AT landmanis mehanízmiíproduktierozíívolʹframovihmíšenejpriteplovihplazmovihnavantažennâhharakternihdlâelmíoslablenihzrivívviterí AT petrovds mehanízmiíproduktierozíívolʹframovihmíšenejpriteplovihplazmovihnavantažennâhharakternihdlâelmíoslablenihzrivívviterí AT podkovyrovvl mehanízmiíproduktierozíívolʹframovihmíšenejpriteplovihplazmovihnavantažennâhharakternihdlâelmíoslablenihzrivívviterí AT poznyakim mehanízmiíproduktierozíívolʹframovihmíšenejpriteplovihplazmovihnavantažennâhharakternihdlâelmíoslablenihzrivívviterí AT toporkovda mehanízmiíproduktierozíívolʹframovihmíšenejpriteplovihplazmovihnavantažennâhharakternihdlâelmíoslablenihzrivívviterí AT zhitlukhinam mehanízmiíproduktierozíívolʹframovihmíšenejpriteplovihplazmovihnavantažennâhharakternihdlâelmíoslablenihzrivívviterí |
| first_indexed |
2025-11-27T06:02:15Z |
| last_indexed |
2025-11-27T06:02:15Z |
| _version_ |
1849922250678992896 |
| fulltext |
EROSION MECHANISMS AND EROSION PRODUCTS IN TUNGSTEN
TARGETS EXPOSED TO PLASMA HEAT LOADS RELEVANT TO ELMS
AND MITIGATED DISRUPTIONS IN ITER
V.M. Safronov1,3, N.I. Arkhipov1, N.S. Klimov1, I.S. Landman2, D.S. Petrov1,4,
V.L. Podkovyrov1, I.M. Poznyak1,3, D.A. Toporkov1, A.M. Zhitlukhin1
1 State Research Center of Russian Federation Troitsk Institute;
for Innovation and Fusion Research, 142190 Troitsk, Moscow reg., Russia;
2 Karlsruhe Institute for Technology, IHM, P.O. Box 3640, 76021, Karlsruhe, Germany;
3 Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia;
4 Moscow Engineering Physics Institute 115409 Kashirskoe shosse 31, Moscow, Russia
Tungsten targets were irradiated by intense plasma streams at plasma gun facilities MK-200UG and QSPA-T. The
targets were tested by plasma loads relevant to Edge Localised Modes (ELM) and mitigated disruptions in ITER.
Material erosion caused by melt motion and by emission of droplets has been studied.
PACS: 52.75.–d, 52.70.–m, 52.40.Hf, 28.52
1. INTRODUCTION
Carbon-fibre composite (CFC) and tungsten are
considered presently as armour materials for the divertor
targets in ITER. During the transient processes, such as
ELMs and disruptions, the divertor armour will be
exposed to the high plasma loads [1] which can cause a
severe erosion of the armour materials. Erosion reduces
lifetime of the divertor components and produces the
material dust, which being tritiated, radioactive and
chemically reactive presents a serious problem for a
safety. In addition the material erosion leads to production
of impurities, which can penetrate into the hot fusion
plasma causing its radiative cooling. The exact amount
and properties of the eroded materials are critically
important to analysis of tokamak-reactor.
The plasma heat loads expected in the ITER transient
events are not achieved in the existing tokamak machines.
Therefore, behavior of candidate armour materials is
studied by use of powerful plasma guns [2-4] and e-beam
facilities [5,6], which are capable to simulate, at least in
part, the loading condition of interest. The present work
refers to experimental study of tungsten armour. The
tungsten targets have been tested by intense plasma
streams at the pulsed plasma gun MK-200UG and quasi-
stationary plasma gun QSPA-T. The targets were
examined by plasma heat fluxes relevant to ITER ELMs
and mitigated disruptions. Primary attention has been
focused at investigation of erosion caused by splashing
and motion of the molten metal.
2. EXPERIMENTAL TECHNIQUE
2.1. MK-200UG EXPERIMENT
At MK-200UG facility, the targets are tested by
magnetized hydrogen plasma streams with heat load Q =
0.05…1 MJ/m2 and pulse duration τ = 0.05 ms. The
plasma heat load Q varies by changing the plasma density
in the range n = (0.1…2) ×1020 m-3 while the impact ion
energy remains practically unaltered Ei = 2…3 keV.
Plasma pressure varies in the range P = 0.03…0.5 bar.
Diameter of the plasma stream – d = 0.06…0.1 m.
Plasma/target interaction occurs in the magnetic field B =
0.5…2 T.
Plasma stream parameters such as heat flux w = Q/τ,
impact ion energy Ei, density n, pressure P, and negligible
percentage of impurities (<1%) are close to the expected
in ITER during the transient processes. The disadvantage
of MK-200UG facility is small duration τ of the plasma
pulse. Because of the small pulse duration the facility is
not suited for longevity test of the divertor materials.
Nevertheless it is quite suitable to simulate the initial
stage of the ITER transient events under rather realistic
plasma parameters. These experimental data need for
development and validation of appropriate numerical
models [7-9].
2.2. QSPA-T EXPERIMENT
At QSPA-T facility, the targets are irradiated by
hydrogen plasma steams with the pulse duration 0.5 ms
and heat load 0.1…2.5 MJ/m2. As the plasma load
condition is very relevant to the ITER transient events, the
facility is applied mainly for longevity testing of
candidate armour materials including investigation of the
erosion mechanisms, erosion products, and resultant
surface damage. Taking into account that the facility is
not equipped by the magnetic field and that the plasma
stream density n ≥1022 m-3 and pressure P = 1…7 bar is
larger than it is expected in ITER, the QSPA-T
experiment seems to give the upper limit of erosion.
3. EXPERIMENTAL RESULTS
3.1. EJECTION OF DROPLETS
Under action of intense plasma stream a melt layer forms
at the surface of any metallic target. A thickness of the
melt layer depends on the loading conditions but as a rule
it is much greater than a thickness of the evaporated layer.
As the melt layer is subjected to the action of various
forces there are many erosion mechanisms, which can
cause a loss of the liquid metal. Particularly the melt
erosion results from the melt motion along the target
surface under the action of the plasma stream and from
ejection of metal droplets due to the hydrodynamic
instabilities developed in the liquid metal. An important
task of the simulation experiment is to investigate the
existing erosion mechanisms and to quantify their
contributions to the net erosion.
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2010. № 6. 51
Series: Plasma Physics (16), p. 51-53.
copper steel
tungsten
52
Fig.1. Droplets in MK-200UG experiment (copper, steel -
graphite collector, tungsten - copper collector)
Ejection of metal droplets has been studied at varying
loading conditions as at MK-200UG so at QSPA-facility. It
was found that the droplet emission happens practically
simultaneously with the beginning of the target melting and
that amount of droplets increases with the plasma load.
The droplets have been detected in experiments with
all metallic targets. In MK-200UG experiment the
droplets were collected at the polished graphite, copper or
silicon plates placed near the exposed target surface
(Fig.1) and afterwards the collected droplets were
analyzed with a microscope. In QSPA-T experiment the
droplets emitted from the tungsten target were recorded
by use of CCD camera (Fig.2).
Fig.2. Traces of hot tungsten droplets at QSPA-T
Typical size of droplets obtained at the collectors and
recorded by CCD camera was measured to be of the order
of 10 μm. Because of the rather large size of the particles
the obtained material dust is not very dangerous from the
viewpoint of ITER safety. Meanwhile some issues
remained in respect to existence of smaller droplets which
could not be detected by the applied diagnostics but
which could present a real problem for tokamak safety.
New diagnostics was developed for online registration
of the erosion products including small particles and
droplets. The diagnostics is based on the laser techniques.
It is capable to measure a summarized cross-section of all
the particles and droplets through attenuation of the laser
30 μm
Fig.3. Scheme of laser diagnostics for on-line
measurement of erosion products (upper); trial figur
f
droplets in , steel and
nio
i
on occurs mainly because of two
erosion mecha roplets
fro
e
obtained on graphite dust (lower)
The above diagnostics was applied for investigation o
experiment with tungsten, copper
bium. Fraction of small droplets (d ≤ 1 μm) was
measured to be negligible in all cases. Thus the
assumption concerning existence of sub-m cron droplets
seems to be invalid.
3.2. SURFACE EROSION
elt layer erosiM
nisms: due to ejection of the metal d
m the target surface and due to melt motion along the
target surface. A contribution of these erosion
mechanisms to the net erosion was studied in the present
experiment.
Droplet ejection results in a partial loss of the molten
material therefore a contribution of this mechanism to the
net erosion might be determined by weighting the target
before and after the plasma exposure. Melt motion leads
to displacement of the material along the surface and this
mechanism might be evaluated through the measurement
of the surface profile.
Plasma stream
T
un
gs
te
n
ta
rg
et
Fig.4. Erosion rates of steel targets caused by melt
motion and droplet ejection at QSPA-T facility
en
rget f the
e
Because of severe surface cracking the tungst
s are not suitable for a precise measurement ota
m lt displacement. Therefore another metallic targets
such as copper, steel, aluminum and niobium were
applied in the present experiment. Fig.4 shows
experimental result obtained at QSPA-T facility with the
beam I(z)/I0.
53
d surface in a radial direction from the stream
axis
steel targets. One can see that the surface erosion caused
by the melt motion is 10 times larger than the erosion due
to the droplet ejection. Identical result was obtained in the
experiments with other metals. It means that formation
and ejection of droplets seem to present some problem for
ITER safety but not for erosion of the divertor armour
materials.
Under the plasma stream action, melt moves along
the expose
to periphery that results in formation of the erosion
crater and of the melt mountains at the crater edge. Depth
of the crater and height of the mountains rises linearly
with a number of plasma impacts.
Fig.5. Erosion profiles measured on steel targets
(QSPA-T, 25 shots) and results of numerical analysis
Th a
pressure gradient formed by the plasma stream at the
ten targets by intense plasma
streams at plasma gu 00UG and QSPA-T
und
ucts
con
f droplet ejection is negligible.
Th
ACKNOWLEDGEMENTS
The work is supported partly by RFBR grant No 09-
02-13562.
ci, et al.// Plasma Phys. Control. Fusion. 2003,
v. 41, p.1523.
5. trelin, et al.// Nucl. Fusion. 1997, v. 37, p.1541.
9,
. 81, p. 275.
e most probable cause of the observed melt motion is
target surface. However this assumption does not agree
with the numerical analysis (Fig. 5). The erosion crater
and the melt displacement obtained in the numerical
modeling based on the melt motion due to the pressure
gradient are much smaller than the measured ones. It
means that a real driving force differs from the pressure
gradient.
SUMMARY
Tungs were tested
n facilities MK-2
er the plasma heat fluxes relevant to ELMs and
mitigated disruptions in ITER. The targets made of steel,
copper, aluminum, and niobium were examined also.
Ejection of the metallic droplets and their properties
have been studied. It’s shown that the erosion prod
sist mainly of ‘large’ droplets (d ≥ 5 mm). The
metallic dust consisting of a huge amount of sub-micron
droplets was not found.
Melt layer erosion occurs mostly due to the melt
motion. A contribution o
e measured melt displacement can not be explained by
pressure gradient. There is another, more effective driving
force.
MJ/m2P = 3 bar; Q =1.9
P = 2 bar; Q = 1.5 MJ/m2
P = 100 bar
REFERENCES
1. G. FederiP = 30 bar
2. N.I. Arkhipov, et al.// J. Nucl Mater. 1996, v. 233-237,
p.686.
3. V.I. Tereshin, et al.// J. Nucl. Mater. 2003, v. 313-316,
p.767.
4. V. Belan, et al.// J. Nucl. Mater. 1996, v. 233-237, p.763.
V.T. As
6. J.Linke, et al.// J. Nucl. Mater. 1994, v. 212-215, p.1195.
7. I.S. Landman, et al.// J. Nucl. Mater. 2005, v. 337-33
p.761.
8. S. Pestchanyi and I. Landman // Fusion Eng. Design.
2006, v
9. B. Bazylev, et al.// Physica Scripta. 2004, v. T111, p. 213.
Article received 15.09.10
МЕХАНИЗМЫ И ПРОДУКТЫ ЭРОЗИИ ВОЛЬФРАМОВЫХ МИШЕНЕЙ ПРИ ТЕПЛОВЫХ
ПЛАЗМЕННЫХ НАГРУЗКАХ, ХАРАКТЕРНЫХ ДЛЯ ELM И ОСЛАБЛЕННЫХ СРЫВОВ В ITERе
В.M. Сафронов, Н.И. Архипов, Н.С. Климов, И.С. Ландман, Д.С. Петров,
В.Л. Подковыров, И.М. Позняк, Д.А. Топорков, А.М. Житлухин
Мишени из вольфрама были подвергнуты воздействию интенсивных потоков плазмы на плазменных
ускорителях МК-200UG и КСПУ-Т. Испытания проводились при плазменных нагрузках, характерных для
ELMов и ослабленных срывов в ITERe. Исследована эрозия материала, обусловленная движением расплава и
капельным разбрызгиванием.
МЕХАНІЗМИ І ПРОДУКТИ ЕРОЗІЇ ВОЛЬФРАМОВИХ МІШЕНЕЙ ПРИ ТЕПЛОВИХ ПЛАЗМОВИХ
НАВАНТАЖЕННЯХ, ХАРАКТЕРНИХ ДЛЯ ELM І ОСЛАБЛЕНИХ ЗРИВІВ В ITERі
В.M. Сафронов, М.І. Архипов, М.С. Клімов, І.С. Ландман, Д.С. Петров,
В.Л. Подковиров, І.М. Позняк, Д.А. Топорков, О.М. Житлухін
Мішені з вольфраму були піддані впливу інтенсивних потоків плазми на плазмових прискорювачах МК-200UG
і КСПУ-Т. Іспити проводилися при плазмових навантаженнях, характерних для ELMів і ослаблених зривів в
ITERі. Досліджено ерозію матеріалу, що обумовлена рухом розплаву і краплинним розбризкуванням.
EROSION MECHANISMS AND EROSION PRODUCTS IN TUNGSTEN TARGETS EXPOSED TO PLASMA HEAT LOADS RELEVANT TO ELMS AND MITIGATED DISRUPTIONS IN ITER
REFERENCES
|