The Canonical Reduction Method for Symplectic Structures and Its Applications

The canonical reduction method is analized in detail and applied to Maxwell and Yang– Mills equations considered as Hamiltonian systems on some fiber bundles with symplectic and connection structures. The minimum interaction principle is proved to have geometric origin within the reduction method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Нелінійні коливання
Datum:2001
Hauptverfasser: Prykarpatsky, A.K., Samoilenko, V.H.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2001
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/174694
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The Canonical Reduction Method for Symplectic Structures and Its Applications / A.K. Prykarpatsky, V.H. Samoilenko // Нелінійні коливання. — 2001. — Т. 4, № 3. — С. 354-367. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-174694
record_format dspace
spelling Prykarpatsky, A.K.
Samoilenko, V.H.
2021-01-27T11:10:22Z
2021-01-27T11:10:22Z
2001
The Canonical Reduction Method for Symplectic Structures and Its Applications / A.K. Prykarpatsky, V.H. Samoilenko // Нелінійні коливання. — 2001. — Т. 4, № 3. — С. 354-367. — Бібліогр.: 10 назв. — англ.
1562-3076
https://nasplib.isofts.kiev.ua/handle/123456789/174694
The canonical reduction method is analized in detail and applied to Maxwell and Yang– Mills equations considered as Hamiltonian systems on some fiber bundles with symplectic and connection structures. The minimum interaction principle is proved to have geometric origin within the reduction method devised.
One of the authors (A.P.) is cordially indebted to Prof. B.A. Kupershmidt for sending a set of inspiring reprints of his papers some of which are cited through this work as well as to Prof. J. Zagrodzinski for sending his paper before publication. Special thanks for nice hospitality and warm research atmosphere are due to the staff of Department of Physics at the EMU of N.Cyprus, especially to Profs. M. Halilsoy, E. Aydiroglu, Ufuk Taneri and Ping Zhang for valuable discussions of problems under study
en
Інститут математики НАН України
Нелінійні коливання
The Canonical Reduction Method for Symplectic Structures and Its Applications
Метод канонічної редукції для симплектичних структур та його застосування
Метод канонической редукции для симплектических структур и его приложения
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The Canonical Reduction Method for Symplectic Structures and Its Applications
spellingShingle The Canonical Reduction Method for Symplectic Structures and Its Applications
Prykarpatsky, A.K.
Samoilenko, V.H.
title_short The Canonical Reduction Method for Symplectic Structures and Its Applications
title_full The Canonical Reduction Method for Symplectic Structures and Its Applications
title_fullStr The Canonical Reduction Method for Symplectic Structures and Its Applications
title_full_unstemmed The Canonical Reduction Method for Symplectic Structures and Its Applications
title_sort canonical reduction method for symplectic structures and its applications
author Prykarpatsky, A.K.
Samoilenko, V.H.
author_facet Prykarpatsky, A.K.
Samoilenko, V.H.
publishDate 2001
language English
container_title Нелінійні коливання
publisher Інститут математики НАН України
format Article
title_alt Метод канонічної редукції для симплектичних структур та його застосування
Метод канонической редукции для симплектических структур и его приложения
description The canonical reduction method is analized in detail and applied to Maxwell and Yang– Mills equations considered as Hamiltonian systems on some fiber bundles with symplectic and connection structures. The minimum interaction principle is proved to have geometric origin within the reduction method devised.
issn 1562-3076
url https://nasplib.isofts.kiev.ua/handle/123456789/174694
citation_txt The Canonical Reduction Method for Symplectic Structures and Its Applications / A.K. Prykarpatsky, V.H. Samoilenko // Нелінійні коливання. — 2001. — Т. 4, № 3. — С. 354-367. — Бібліогр.: 10 назв. — англ.
work_keys_str_mv AT prykarpatskyak thecanonicalreductionmethodforsymplecticstructuresanditsapplications
AT samoilenkovh thecanonicalreductionmethodforsymplecticstructuresanditsapplications
AT prykarpatskyak metodkanoníčnoíredukcíídlâsimplektičnihstrukturtaiogozastosuvannâ
AT samoilenkovh metodkanoníčnoíredukcíídlâsimplektičnihstrukturtaiogozastosuvannâ
AT prykarpatskyak metodkanoničeskoiredukciidlâsimplektičeskihstrukturiegopriloženiâ
AT samoilenkovh metodkanoničeskoiredukciidlâsimplektičeskihstrukturiegopriloženiâ
AT prykarpatskyak canonicalreductionmethodforsymplecticstructuresanditsapplications
AT samoilenkovh canonicalreductionmethodforsymplecticstructuresanditsapplications
first_indexed 2025-12-07T20:54:15Z
last_indexed 2025-12-07T20:54:15Z
_version_ 1850884337823645696