Multiple solutions for nonlinear boundary-value problems of ODE

We consider a Hamilton system related to the Trott curve in Harnack’s theorem. This theorem says that the maximal number of ovals for the fourth order curve is four. We treat the related Hamilton system which has more ovals that is prescribed by Harnack’s theorem. We give explanation and consider th...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Нелінійні коливання
Дата:2014
Автор: Kirichuka, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/174713
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Multiple solutions for nonlinear boundary-value problems of ODE / A. Kirichuka // Нелінійні коливання. — 2014. — Т. 17, № 1. — С. 50-57. — Бібліогр.: 4 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We consider a Hamilton system related to the Trott curve in Harnack’s theorem. This theorem says that the maximal number of ovals for the fourth order curve is four. We treat the related Hamilton system which has more ovals that is prescribed by Harnack’s theorem. We give explanation and consider the Dirichlet boundary-value problem for the system. Precise estimation is given for the number of solutions to the Dirichlet problem. Розглянуто гамiльтонову систему, пов’язану з кривою Тротта в теоремi Харнака, яка стверджує, що максимальна кiлькiсть овалiв кривої четвертого порядку дорiвнює 4. Розглянуто гамiльтонову систему, що має бiльшу кiлькiсть овалiв, нiж стверджується в теоремi Харнака. Наведено пояснення цього факту та розглянуто граничну задачу Дiрiхле для вiдповiдної системи. Отримано точнi оцiнки кiлькостi розв’язкiв задачi Дiрiхле.
ISSN:1562-3076