On solutions of general nonlinear initial boundary-value problem of inviscid fluid's dynamics in moving vessel

The problem of integrating the Laplace equation in a changing 3-dimensional region, with the initial and boundary conditions, is investigated. The paper is mainly devoted to the problem arising in dynamics of an inviscid incompressible fluid which partially fills a moving vessel and is in irrotat...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Нелінійні коливання
Дата:2001
Автор: Zolotenko, G.F.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2001
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/174760
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On solutions of general nonlinear initial boundary-value problem of inviscid fluid's dynamics in moving vessel / G.F. Zolotenko // Нелінійні коливання. — 2001. — Т. 4, № 4. — С. 560-573. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-174760
record_format dspace
spelling Zolotenko, G.F.
2021-01-27T18:03:58Z
2021-01-27T18:03:58Z
2001
On solutions of general nonlinear initial boundary-value problem of inviscid fluid's dynamics in moving vessel / G.F. Zolotenko // Нелінійні коливання. — 2001. — Т. 4, № 4. — С. 560-573. — Бібліогр.: 11 назв. — англ.
1562-3076
AMS Subject Classification: 76B03, 76B07
https://nasplib.isofts.kiev.ua/handle/123456789/174760
The problem of integrating the Laplace equation in a changing 3-dimensional region, with the initial and boundary conditions, is investigated. The paper is mainly devoted to the problem arising in dynamics of an inviscid incompressible fluid which partially fills a moving vessel and is in irrotational absolute motion. In this case the considered space region is bounded by the rigid vessel’s walls and the unknown free surface of fluid. The boundary conditions consist of the Neyman conditions on the rigid walls and the nonlinear kinematic and dynamic conditions on the free surface. Besides, the condition of a constancy of the region’s volume is imposed. The concept of a solution of this problem is analyzed. One distinguishes a certain class of solutions and proves their existence. An example of such a solution is given.
en
Інститут математики НАН України
Нелінійні коливання
On solutions of general nonlinear initial boundary-value problem of inviscid fluid's dynamics in moving vessel
Про розв'язки загальної нелінійної початкової граничної задачі динаміки нев'язкої рідини в рухомому об'ємі
О решениях общей нелинейной начальной краевой задачи динамики невязкой жидкости в движущемся сосуде
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On solutions of general nonlinear initial boundary-value problem of inviscid fluid's dynamics in moving vessel
spellingShingle On solutions of general nonlinear initial boundary-value problem of inviscid fluid's dynamics in moving vessel
Zolotenko, G.F.
title_short On solutions of general nonlinear initial boundary-value problem of inviscid fluid's dynamics in moving vessel
title_full On solutions of general nonlinear initial boundary-value problem of inviscid fluid's dynamics in moving vessel
title_fullStr On solutions of general nonlinear initial boundary-value problem of inviscid fluid's dynamics in moving vessel
title_full_unstemmed On solutions of general nonlinear initial boundary-value problem of inviscid fluid's dynamics in moving vessel
title_sort on solutions of general nonlinear initial boundary-value problem of inviscid fluid's dynamics in moving vessel
author Zolotenko, G.F.
author_facet Zolotenko, G.F.
publishDate 2001
language English
container_title Нелінійні коливання
publisher Інститут математики НАН України
format Article
title_alt Про розв'язки загальної нелінійної початкової граничної задачі динаміки нев'язкої рідини в рухомому об'ємі
О решениях общей нелинейной начальной краевой задачи динамики невязкой жидкости в движущемся сосуде
description The problem of integrating the Laplace equation in a changing 3-dimensional region, with the initial and boundary conditions, is investigated. The paper is mainly devoted to the problem arising in dynamics of an inviscid incompressible fluid which partially fills a moving vessel and is in irrotational absolute motion. In this case the considered space region is bounded by the rigid vessel’s walls and the unknown free surface of fluid. The boundary conditions consist of the Neyman conditions on the rigid walls and the nonlinear kinematic and dynamic conditions on the free surface. Besides, the condition of a constancy of the region’s volume is imposed. The concept of a solution of this problem is analyzed. One distinguishes a certain class of solutions and proves their existence. An example of such a solution is given.
issn 1562-3076
url https://nasplib.isofts.kiev.ua/handle/123456789/174760
citation_txt On solutions of general nonlinear initial boundary-value problem of inviscid fluid's dynamics in moving vessel / G.F. Zolotenko // Нелінійні коливання. — 2001. — Т. 4, № 4. — С. 560-573. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT zolotenkogf onsolutionsofgeneralnonlinearinitialboundaryvalueproblemofinviscidfluidsdynamicsinmovingvessel
AT zolotenkogf prorozvâzkizagalʹnoínelíníinoípočatkovoígraničnoízadačídinamíkinevâzkoírídinivruhomomuobêmí
AT zolotenkogf orešeniâhobŝeinelineinoinačalʹnoikraevoizadačidinamikinevâzkoižidkostivdvižuŝemsâsosude
first_indexed 2025-12-07T18:41:13Z
last_indexed 2025-12-07T18:41:13Z
_version_ 1850875967454576640