Asymptotic stability for a thermoelectromagnetic material

In this work we consider a linear thermoelectromagnetic material, whose behaviour is characterized by two rate-type equations for the heat flux and the electric current density. We derive the restrictions imposed by the laws of thermodynamics on the constitutive equations and introduce the free en...

Full description

Saved in:
Bibliographic Details
Published in:Нелінійні коливання
Date:2001
Main Author: Amendola, G.
Format: Article
Language:English
Published: Інститут математики НАН України 2001
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/174761
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Asymptotic stability for a thermoelectromagnetic material / G. Amendola // Нелінійні коливання. — 2001. — Т. 4, № 4. — С. 434-457 . — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-174761
record_format dspace
spelling Amendola, G.
2021-01-27T18:05:00Z
2021-01-27T18:05:00Z
2001
Asymptotic stability for a thermoelectromagnetic material / G. Amendola // Нелінійні коливання. — 2001. — Т. 4, № 4. — С. 434-457 . — Бібліогр.: 8 назв. — англ.
1562-3076
AMS Subject Classification: 80A05, 74F05, 74F15
https://nasplib.isofts.kiev.ua/handle/123456789/174761
In this work we consider a linear thermoelectromagnetic material, whose behaviour is characterized by two rate-type equations for the heat flux and the electric current density. We derive the restrictions imposed by the laws of thermodynamics on the constitutive equations and introduce the free energy which yields the existence of a domain of dependence. Uniqueness, existence and asymptotic stability theorems are then proved.
Work perfomed under the auspices of C.N.R. and M.U.R.S.T..
en
Інститут математики НАН України
Нелінійні коливання
Asymptotic stability for a thermoelectromagnetic material
Асимптотична стійкість для термоелектромагнітного матеріалу
Асимптотическая устойчивость для термоэлектромагнитного материала
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Asymptotic stability for a thermoelectromagnetic material
spellingShingle Asymptotic stability for a thermoelectromagnetic material
Amendola, G.
title_short Asymptotic stability for a thermoelectromagnetic material
title_full Asymptotic stability for a thermoelectromagnetic material
title_fullStr Asymptotic stability for a thermoelectromagnetic material
title_full_unstemmed Asymptotic stability for a thermoelectromagnetic material
title_sort asymptotic stability for a thermoelectromagnetic material
author Amendola, G.
author_facet Amendola, G.
publishDate 2001
language English
container_title Нелінійні коливання
publisher Інститут математики НАН України
format Article
title_alt Асимптотична стійкість для термоелектромагнітного матеріалу
Асимптотическая устойчивость для термоэлектромагнитного материала
description In this work we consider a linear thermoelectromagnetic material, whose behaviour is characterized by two rate-type equations for the heat flux and the electric current density. We derive the restrictions imposed by the laws of thermodynamics on the constitutive equations and introduce the free energy which yields the existence of a domain of dependence. Uniqueness, existence and asymptotic stability theorems are then proved.
issn 1562-3076
url https://nasplib.isofts.kiev.ua/handle/123456789/174761
citation_txt Asymptotic stability for a thermoelectromagnetic material / G. Amendola // Нелінійні коливання. — 2001. — Т. 4, № 4. — С. 434-457 . — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT amendolag asymptoticstabilityforathermoelectromagneticmaterial
AT amendolag asimptotičnastíikístʹdlâtermoelektromagnítnogomateríalu
AT amendolag asimptotičeskaâustoičivostʹdlâtermoélektromagnitnogomateriala
first_indexed 2025-12-07T18:08:42Z
last_indexed 2025-12-07T18:08:42Z
_version_ 1850873922489155584