On three solutions of the second order periodic boundary-value problem

We consider the periodic boundary-value problem x'' + a(t)x' + b(t)x = f(t, x, x'), x(') =x(2π), x'(0) = x' (2π), where a, b are Lebesgue integrable functions and f fulfils the Caratheodory conditions. We extend results about the Leray – Schauder topological deg...

Full description

Saved in:
Bibliographic Details
Published in:Нелінійні коливання
Date:2001
Main Authors: Draessler, J., Rachůnková, I.
Format: Article
Language:English
Published: Інститут математики НАН України 2001
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/174763
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On three solutions of the second order periodic boundary-value problem / J. Draessler, I. Rachůnková // Нелінійні коливання. — 2001. — Т. 4, № 3. — С. 471-486. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:We consider the periodic boundary-value problem x'' + a(t)x' + b(t)x = f(t, x, x'), x(') =x(2π), x'(0) = x' (2π), where a, b are Lebesgue integrable functions and f fulfils the Caratheodory conditions. We extend results about the Leray – Schauder topological degree and ´ present conditions implying nonzero values of the degree on sets defined by lower and upper functions. Using such results we prove the existence of at least three different solutions to the above problem.
ISSN:1562-3076