On three solutions of the second order periodic boundary-value problem
We consider the periodic boundary-value problem x'' + a(t)x' + b(t)x = f(t, x, x'), x(') =x(2π), x'(0) = x' (2π), where a, b are Lebesgue integrable functions and f fulfils the Caratheodory conditions. We extend results about the Leray – Schauder topological deg...
Збережено в:
| Опубліковано в: : | Нелінійні коливання |
|---|---|
| Дата: | 2001 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2001
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/174763 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On three solutions of the second order periodic boundary-value problem / J. Draessler, I. Rachůnková // Нелінійні коливання. — 2001. — Т. 4, № 3. — С. 471-486. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-174763 |
|---|---|
| record_format |
dspace |
| spelling |
Draessler, J. Rachůnková, I. 2021-01-27T18:14:01Z 2021-01-27T18:14:01Z 2001 On three solutions of the second order periodic boundary-value problem / J. Draessler, I. Rachůnková // Нелінійні коливання. — 2001. — Т. 4, № 3. — С. 471-486. — Бібліогр.: 6 назв. — англ. 1562-3076 AMS Subject Classification: 34B15, 34C25 https://nasplib.isofts.kiev.ua/handle/123456789/174763 We consider the periodic boundary-value problem x'' + a(t)x' + b(t)x = f(t, x, x'), x(') =x(2π), x'(0) = x' (2π), where a, b are Lebesgue integrable functions and f fulfils the Caratheodory conditions. We extend results about the Leray – Schauder topological degree and ´ present conditions implying nonzero values of the degree on sets defined by lower and upper functions. Using such results we prove the existence of at least three different solutions to the above problem. Supported by grant No. 201/01/1451 of the Grant Agency of Czech Republic. en Інститут математики НАН України Нелінійні коливання On three solutions of the second order periodic boundary-value problem Про три розв'язки періодичної крайової задачі другого порядку О трех решениях периодической краевой задачи второго порядка Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On three solutions of the second order periodic boundary-value problem |
| spellingShingle |
On three solutions of the second order periodic boundary-value problem Draessler, J. Rachůnková, I. |
| title_short |
On three solutions of the second order periodic boundary-value problem |
| title_full |
On three solutions of the second order periodic boundary-value problem |
| title_fullStr |
On three solutions of the second order periodic boundary-value problem |
| title_full_unstemmed |
On three solutions of the second order periodic boundary-value problem |
| title_sort |
on three solutions of the second order periodic boundary-value problem |
| author |
Draessler, J. Rachůnková, I. |
| author_facet |
Draessler, J. Rachůnková, I. |
| publishDate |
2001 |
| language |
English |
| container_title |
Нелінійні коливання |
| publisher |
Інститут математики НАН України |
| format |
Article |
| title_alt |
Про три розв'язки періодичної крайової задачі другого порядку О трех решениях периодической краевой задачи второго порядка |
| description |
We consider the periodic boundary-value problem x'' + a(t)x' + b(t)x = f(t, x, x'), x(') =x(2π), x'(0) = x' (2π), where a, b are Lebesgue integrable functions and f fulfils the
Caratheodory conditions. We extend results about the Leray – Schauder topological degree and ´ present conditions implying nonzero values of the degree on sets defined by lower and upper
functions. Using such results we prove the existence of at least three different solutions to the
above problem.
|
| issn |
1562-3076 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/174763 |
| fulltext |
|
| citation_txt |
On three solutions of the second order periodic boundary-value problem / J. Draessler, I. Rachůnková // Нелінійні коливання. — 2001. — Т. 4, № 3. — С. 471-486. — Бібліогр.: 6 назв. — англ. |
| work_keys_str_mv |
AT draesslerj onthreesolutionsofthesecondorderperiodicboundaryvalueproblem AT rachunkovai onthreesolutionsofthesecondorderperiodicboundaryvalueproblem AT draesslerj protrirozvâzkiperíodičnoíkraiovoízadačídrugogoporâdku AT rachunkovai protrirozvâzkiperíodičnoíkraiovoízadačídrugogoporâdku AT draesslerj otrehrešeniâhperiodičeskoikraevoizadačivtorogoporâdka AT rachunkovai otrehrešeniâhperiodičeskoikraevoizadačivtorogoporâdka |
| first_indexed |
2025-11-24T06:44:33Z |
| last_indexed |
2025-11-24T06:44:33Z |
| _version_ |
1850844244273528832 |