Determining the rotational velocity of gas-metal multicomponent plasma in a reflex discharge

For the first time the rotational velocity of plasma layers with np = ncr^1,2 in the gas-metal plasma medium of the reflex discharge was determined using the two-frequency microwave fluctuation reflectometry. The measurement results demonstrated that the angular frequency of plasma layer rotation is...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Kovtun, Yu.V., Skibenko, A.I., Skibenko, E.I., Larin, Yu.V., Yuferov, V.B.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2010
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/17488
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Determining the rotational velocity of gas-metal multicomponent plasma in a reflex discharge / Yu.V. Kovtun, A.I. Skibenko, E.I. Skibenko, Yu.V. Larin, V.B. Yuferov // Вопросы атомной науки и техники. — 2010. — № 6. — С. 153-155. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-17488
record_format dspace
spelling Kovtun, Yu.V.
Skibenko, A.I.
Skibenko, E.I.
Larin, Yu.V.
Yuferov, V.B.
2011-02-26T22:33:21Z
2011-02-26T22:33:21Z
2010
Determining the rotational velocity of gas-metal multicomponent plasma in a reflex discharge / Yu.V. Kovtun, A.I. Skibenko, E.I. Skibenko, Yu.V. Larin, V.B. Yuferov // Вопросы атомной науки и техники. — 2010. — № 6. — С. 153-155. — Бібліогр.: 15 назв. — англ.
1562-6016
https://nasplib.isofts.kiev.ua/handle/123456789/17488
For the first time the rotational velocity of plasma layers with np = ncr^1,2 in the gas-metal plasma medium of the reflex discharge was determined using the two-frequency microwave fluctuation reflectometry. The measurement results demonstrated that the angular frequency of plasma layer rotation is varying and therefore the plasma rotates not as a single whole. The maximum rotation velocity increases with magnetic field increasing. The values of the electric field strength in two layers and the plasma particle separation coefficient α were determined.
Впервые для определения скорости вращения плазменных слоев с np = ncr^1,2 в среде газометаллической плазмы отражательного разряда была применена двухчастотная СВЧ-флуктационная рефлектометрия. Результаты измерений показали, что угловая частота вращения плазменных слоев различна и, таким образом, плазма вращается не как единое целое. Максимальная скорость вращения увеличивается с увеличением магнитного поля. Проведены оценки величин напряженности электрического поля в двух слоях и коэффициента α разделения частиц плазмы.
Вперше для визначення швидкості обертання плазмових прошарків з np = ncr^1,2 в середовищі газометалевої плазми відбивного розряду була застосована двохчастотна НВЧ-флуктаційна рефлектометрія. Результати вимірювань показали, що кутова частота обертання плазмових прошарків різна і, таким чином, плазма обертається не як єдине ціле. Максимальна швидкість обертання збільшується зі збільшенням магнітного поля. Проведено оцінки величин напруженості електричного поля в двох прошарках і коефіцієнта α розділення частинок плазми.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Низкотемпературная плазма и плазменные технологии
Determining the rotational velocity of gas-metal multicomponent plasma in a reflex discharge
Определение скорости вращения газометаллической многокомпонентной плазмы отражательного разряда
Визначення швидкості обертання газометалевої багатокомпонентної плазми відбивного розряду
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Determining the rotational velocity of gas-metal multicomponent plasma in a reflex discharge
spellingShingle Determining the rotational velocity of gas-metal multicomponent plasma in a reflex discharge
Kovtun, Yu.V.
Skibenko, A.I.
Skibenko, E.I.
Larin, Yu.V.
Yuferov, V.B.
Низкотемпературная плазма и плазменные технологии
title_short Determining the rotational velocity of gas-metal multicomponent plasma in a reflex discharge
title_full Determining the rotational velocity of gas-metal multicomponent plasma in a reflex discharge
title_fullStr Determining the rotational velocity of gas-metal multicomponent plasma in a reflex discharge
title_full_unstemmed Determining the rotational velocity of gas-metal multicomponent plasma in a reflex discharge
title_sort determining the rotational velocity of gas-metal multicomponent plasma in a reflex discharge
author Kovtun, Yu.V.
Skibenko, A.I.
Skibenko, E.I.
Larin, Yu.V.
Yuferov, V.B.
author_facet Kovtun, Yu.V.
Skibenko, A.I.
Skibenko, E.I.
Larin, Yu.V.
Yuferov, V.B.
topic Низкотемпературная плазма и плазменные технологии
topic_facet Низкотемпературная плазма и плазменные технологии
publishDate 2010
language English
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Определение скорости вращения газометаллической многокомпонентной плазмы отражательного разряда
Визначення швидкості обертання газометалевої багатокомпонентної плазми відбивного розряду
description For the first time the rotational velocity of plasma layers with np = ncr^1,2 in the gas-metal plasma medium of the reflex discharge was determined using the two-frequency microwave fluctuation reflectometry. The measurement results demonstrated that the angular frequency of plasma layer rotation is varying and therefore the plasma rotates not as a single whole. The maximum rotation velocity increases with magnetic field increasing. The values of the electric field strength in two layers and the plasma particle separation coefficient α were determined. Впервые для определения скорости вращения плазменных слоев с np = ncr^1,2 в среде газометаллической плазмы отражательного разряда была применена двухчастотная СВЧ-флуктационная рефлектометрия. Результаты измерений показали, что угловая частота вращения плазменных слоев различна и, таким образом, плазма вращается не как единое целое. Максимальная скорость вращения увеличивается с увеличением магнитного поля. Проведены оценки величин напряженности электрического поля в двух слоях и коэффициента α разделения частиц плазмы. Вперше для визначення швидкості обертання плазмових прошарків з np = ncr^1,2 в середовищі газометалевої плазми відбивного розряду була застосована двохчастотна НВЧ-флуктаційна рефлектометрія. Результати вимірювань показали, що кутова частота обертання плазмових прошарків різна і, таким чином, плазма обертається не як єдине ціле. Максимальна швидкість обертання збільшується зі збільшенням магнітного поля. Проведено оцінки величин напруженості електричного поля в двох прошарках і коефіцієнта α розділення частинок плазми.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/17488
citation_txt Determining the rotational velocity of gas-metal multicomponent plasma in a reflex discharge / Yu.V. Kovtun, A.I. Skibenko, E.I. Skibenko, Yu.V. Larin, V.B. Yuferov // Вопросы атомной науки и техники. — 2010. — № 6. — С. 153-155. — Бібліогр.: 15 назв. — англ.
work_keys_str_mv AT kovtunyuv determiningtherotationalvelocityofgasmetalmulticomponentplasmainareflexdischarge
AT skibenkoai determiningtherotationalvelocityofgasmetalmulticomponentplasmainareflexdischarge
AT skibenkoei determiningtherotationalvelocityofgasmetalmulticomponentplasmainareflexdischarge
AT larinyuv determiningtherotationalvelocityofgasmetalmulticomponentplasmainareflexdischarge
AT yuferovvb determiningtherotationalvelocityofgasmetalmulticomponentplasmainareflexdischarge
AT kovtunyuv opredelenieskorostivraŝeniâgazometalličeskoimnogokomponentnoiplazmyotražatelʹnogorazrâda
AT skibenkoai opredelenieskorostivraŝeniâgazometalličeskoimnogokomponentnoiplazmyotražatelʹnogorazrâda
AT skibenkoei opredelenieskorostivraŝeniâgazometalličeskoimnogokomponentnoiplazmyotražatelʹnogorazrâda
AT larinyuv opredelenieskorostivraŝeniâgazometalličeskoimnogokomponentnoiplazmyotražatelʹnogorazrâda
AT yuferovvb opredelenieskorostivraŝeniâgazometalličeskoimnogokomponentnoiplazmyotražatelʹnogorazrâda
AT kovtunyuv viznačennâšvidkostíobertannâgazometalevoíbagatokomponentnoíplazmivídbivnogorozrâdu
AT skibenkoai viznačennâšvidkostíobertannâgazometalevoíbagatokomponentnoíplazmivídbivnogorozrâdu
AT skibenkoei viznačennâšvidkostíobertannâgazometalevoíbagatokomponentnoíplazmivídbivnogorozrâdu
AT larinyuv viznačennâšvidkostíobertannâgazometalevoíbagatokomponentnoíplazmivídbivnogorozrâdu
AT yuferovvb viznačennâšvidkostíobertannâgazometalevoíbagatokomponentnoíplazmivídbivnogorozrâdu
first_indexed 2025-11-25T21:29:33Z
last_indexed 2025-11-25T21:29:33Z
_version_ 1850558026763730944
fulltext DETERMINING THE ROTATIONAL VELOCITY OF GAS-METAL MULTICOMPONENT PLASMA IN A REFLEX DISCHARGE Yu.V. Kovtun, A.I. Skibenko, E.I. Skibenko, Yu.V. Larin, V.B. Yuferov National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: Ykovtun@kipt.kharkov.ua For the first time the rotational velocity of plasma layers with np = ncr 1,2 in the gas-metal plasma medium of the reflex discharge was determined using the two-frequency microwave fluctuation reflectometry. The measurement results demonstrated that the angular frequency of plasma layer rotation is varying and therefore the plasma rotates not as a single whole. The maximum rotation velocity increases with magnetic field increasing. The values of the electric field strength in two layers and the plasma particle separation coefficient α were determined. PACS: 52.80.Sm One of the features of the plasma, formed and located in the crossed E×H, is its drift rotation. Under certain conditions in the rotating plasma the development of different instabilities can take place that results, for example, in the plasma ion component heating [1,2]. In the case of multicomponent plasma the plasma column rotation leads to the spatial separation of the ion component [3]. Efficiency of the radial ion separation directly depends on the rotational velocity. In connection with the above, the determination of the rotational velocity of multicomponent plasma is of undoubted interest. To determine the plasma rotation velocity one applies different techniques: charge-exchanging spectro-scopy based on the plasma sounding by high-energy heavy ion beams [4] and on the determination of the Doppler shift of the spectral lines of heavy ions; measurement of the Doppler shift of the spectral line of excited atom or ion [5-8]; microwave Doppler reflectometry based on the sounding wave frequency shift in the case of wave reflection from the moving plasma layer [9]; microwave fluctuation reflectometry [10]; use of spaced electric probes, measurement of the cross correlating function of signals from the probe [11]. Experimental determination of the plasma rotation velocity in the reflex discharge (Penning discharge) has been carried out in [6-9]. The Doppler spectroscopy was used for both the stationary discharge in hydrogen [6], and the pulsed discharge in pure gases Ar, Kr, Xe and mixed gases Ar+Xe, Xe+H2, Ar+H2 [7,8]. In [9] (pulsed discharge in hydrogen) the microwave Doppler spectroscopy was used. Experiments in the reflex discharge aimed to determining the rotational velocity were carried out for the plasma formed in the mono- or two-component gaseous medium. The velocity of metal plasma rotation was determined in the vacuum-arc centrifuge for pure metals Mg, Zn, Cd, Pb using electrical probes. Thus, there have not been carried experiments in the reflex discharge in order to determine the gas-metal plasma rotation velocity. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2010. № 6. 153 Series: Plasma Physics (16), p. 153-155. A purpose of the present work was to measure the parametric dependences on the rotational velocity of the gas-metal multicomponent plasma formed in the pulsed reflex discharge. A peculiarity of the work is the use, for the first time, of the two-frequency microwave fluctuation reflectometry for determining the rotational velocity of plasma layers with с np = ncr 1,2 in the reflex discharge. The microwave fluctuation reflectometry is based on the determination of the intercorrelation function of two poloidally spaced signals reflected from the plasma layer of an equal density. The plasma sounding frequency was chosen so that, firstly, the formed plasma should contain a layer being equal to np = ncr, secondly, the plasma layers with different ncr should be spaced at some distance. Two chosen sounding frequencies were f 1 = 37,13 GHz and f2 = 72,88 GHz with ncr 1=1,7×1013 cm-3 and ncr 2 = 6,5×1013 cm-3 respectively. Plasma location was performed by the microwave (O-mode) across the plasma column in one and the same cross-section for both frequencies. As distinct from the measurements by the Doppler frequency shift characterized by the tilt sounding and reflection points not coinciding with the layer having np = ncr, the correlation method is based on the normal sounding. Therefore, it is possible to determine simultaneously the spatial position of the layer and its rotational velocity. Gas-metal plasma was formed as a result of the discharge in the working medium of a substance composed of H2, Ar or a gaseous mixture of 88.9%Kr- 7%Xe-4%N2-0,1%O2 and a sputtered cathode material. Cathodes were made of a monometallic Ti or a composite material, namely, Cu with Ti deposited by the vacuum-arc method. A maximum plasma density was np ≥ 6,5 ×1013 сm-3, discharge voltage Udis. ≤4 kV, duration and maximum value of the discharge current intensity were ~ 1 ms and Idis ~ 1,8 kA, respectively. A pulsed mirror-configuration magnetic field (mirror ratio of 1.25) of 18 ms duration was formed by a solenoid composed of six coils having a maximum magnetic field induction BB0 ≤ 0,65 T. Due to the use of two types of cathodes in both cases the cathode material (Ti) enters into the plasma that is confirmed by the spectrometric measurements [12,13]. The titanium content in the discharge, for composite cathodes determined in [14], is at a level of 40-50% and the same value is confirmed by the volume-mass measurements of the cathode material consumption after more than 3000 discharge pulses. The experimental values of the rotational velocity of the plasma layer with np ≥ 1,7×1013 cm-3 for mixtures of H2+Ti and Ar+Ti and different initial values of the magnetic field are presented in Figs. 1 and 2 (experiments mailto:Ykovtun@kipt.kharkov.ua with a composite cathode). Maximum rotational velocities of the gas-metal plasma for the mixture of H2+Ti were vφ1=25×105 cm/s (B1=0,253T) and vφ2=8,7×105 cm/s (B2=0.126 T), for the mixture of Ar+Ti vφ1=18,5×105 cm/s (B1=0,247 T) and vφ2=7,76×105 cm/s (B2=0,107T). 3,8 4,0 4,2 4,4 4,6 4,8 5,0 5,2 5,4 1 10 B2, T B1, T t, ms v ϕ , 1 05 c m /s B=B1 B=B2 0,23 0,24 0,25 0,26 0,27 0,28 0,29 0,3 0,31 0,115 0,121 0,126 0,13 0,135 0,141 0,147 0,15 0,154 Fig. 1. Time dependence of the rotational velocity of the plasma layer with np ≥ 1,7 1013 cm-3 for the mixture of H2+Ti and different initial values of the magnetic field (p =2×10-3 Torr, Udis. = 3,6 kV, composite cathodes) 3,6 3,8 4,0 4,2 4,4 4,6 4,8 5,0 5,2 5,4 0,1 1 10 B=B1 B=B2 0,22 0,23 0,24 0,25 0,26 0,27 0,28 0,29 0,3 0,31 0,102 0,107 0,112 0,118 0,121 0,126 0,131 0,137 0,14 0,143 B2, T B1, T t, ms v ϕ , 1 05 c m /s Fig. 2. Time dependence of the rotational velocity of the plasma layer with np ≥ 1,7 1013 cm-3 for the mixture of Ar+Ti and different initial values of the magnetic field (p =1×10-3 Torr, Udis. = 3,2 kV, composite cathodes) As is seen from the Figs. 1 and 2 the maximum rotational velocity of the plasma layer increases with magnetic field increasing. Naturally, that in this case the electromagnetic force increases too, Ir×B (Ir=2πrLir(r) [6], assuming Ir=const). Consequently, the velocity should be increased proportionally to B, i.e. B 154 B1/B2 ≈ vφ1/vφ2. In the experiment with the gas-metal mixture (Ar+Ti) the ratios B1B /B2=2,31 and vφ1/vφ2=2,38 were obtained that is in good agreement with the above assumption. For the H2+Ti plasma the ratios BB1/B2=2,08 and vφ1/vφ2=2,87 were obtained. The rotational velocity increase with magnetic field increasing has been also observed in the earlier experiments [5-7]. The time dependences of the rotational velocity of plasma layers with np ≥ 1,7×1013 cm-3 and np ≥ 6,5×1013 cm-3 for the mixtures of Ar+Ti and Kr+Xe+N2+O2+Ti are presented in Figs. 3 and 4 (experiments with monometallic cathode). The maximum values of the gas-metal plasma for the layer A with np ≥ 1,7×1013 cm-3 are vφA = 8,7×105 cm/s (Ar+Ti), vφA= 7,6×105 cm/s (Kr+Xe+N2+O2+Ti), for the layer Β with np ≥ 6,5×1013 cm-3 they are vφB = 7,9×105 cm/s (Ar+Ti), vφB= 6,7×105 cm/s (Kr+Xe+N2+O2+Ti). The maximum radii of the layers A and B determined by the change of a phase reflected from the microwave wave were 4,4 and 3 cm respectively, for both gas-metal mixtures. In the case, when the plasma rotates as a single whole, the rotation frequency ωφ, of layers having different radii should be equal for all the layers, and the rotational velocity should increase linearly with radius increasing. In the given case the rotation frequencies of the layers A and B do not coincide with each other, i.e. ωφA≠ωφB for both gas-metal layers. The rotation frequency of the layer Β ωφB >ωφA, i.e. the layer B with a shorter radius has a higher rotation frequency than the layer A with a longer radius. Similar results were obtained in [6]. 2,0 2,2 2,4 2,6 2,8 3,0 3,2 3,4 2 4 6 8 10 v ϕ , 1 05 c m /s B, T ncr=1,7×1013cm-3 ncr=6,5×1013cm-3 0,122 0,133 0,143 0,153 0,164 0,174 0,185 0,195 t, ms Fig. 3. Time dependence of the rotational velocity of the plasma layer with np ≥ 1,7×1013cm-3 and np≥6,5×1013 cm-3 for the mixture of Ar+Ti (p =6×10-3 Torr, Udis. = 3,8 kV, monometallic cathodes) 2,0 2,2 2,4 2,6 2,8 3,0 3,2 3,4 2 4 6 8 10 v ϕ , 1 05 c m /s t, ms B, T ncr=1,7×1013cm-3 ncr=6,5×1013cm-3 0,122 0,133 0,143 0,153 0,164 0,174 0,185 0,195 Fig. 4. Time dependence of the rotational velocity of the plasma layer with np ≥ 1,7×1013 cm-3 and np ≥ 6,5×1013 cm-3 for the mixture of Kr+Xe+N2+O2+Ti (p =6×10-3 Torr, Udis. = 3,8 kV, monometallic cathodes) The rotational velocity of the plasma electron component, respectively the rotation frequency, is determined as vφ=-E/B and from this the electric field strength can be evaluated. For the case of the Ar+Ti plasma it is equal to 13,3 V/cm (layer Α) and 12,2 V/cm (layer Β), and for the Kr+Xe+N2+O2+Ti plasma to 11,6 V/cm (layer A) and 10,2V/cm (layer B) respectively. In the rotating plasma a spatial ion separation occurs due to the centrifugal effects. The separation coefficient α is determined as in [15]: α=exp(Δm vφ2/2kT), (1) 155 where Δm is the mass difference of various elements, vφ is the rotational velocity, T is the temperature, k is the Boltzmann constant. Using the experimental value of the plasma rotational velocity and taking Ti ~ 10 eV, we obtain the plasma particle separation coefficient α: for Ar+Ti α ≤ 4, for Kr+Ti α ≤ 3 and for H+Ti α is from 7 to ≥ 103. CONCLUSIONS The conclusions, based on our experimental measurements and evaluations, are as follows. 1. For the first time the rotational velocity of the plasma layer with np = ncr in the gas-metal plasma medium of the reflex discharge at frequencies f = 37,13 and 72,88 GHz was determined using the two-frequency microwave fluctuation reflectometry. 2. The measured angular rotation frequency of plasma layers with np ≥ 1,7×1013 cm-3 and np ≥ 6,5×1013 cm-3 is different for these layers and ωφA≠ ωφB. Consequently, the plasma rotates not as a single whole that is in accordance with the results of other papers for a discharge of similar type. 3. The electric field strengths in two plasma layers of a different density were determined. It has been established that their values are close and are at a level of 10…13 V/cm. 4. The maximum rotational velocity increases with magnetic field increasing and reaches the values vφ1=25×105 cm/s (H2+Ti), vφ1=18,5 105 cm/s (Ar+Ti). 5. The plasma particle separation coefficient α was evaluated: for Ar+Ti α is from 1.3…1.4 to 4, for Kr+Ti α is ~ 2-3, and for H+Ti α is from 7 to ≥ 103. REFERENCES 1. A.B. Mikhailovsky, J.G. Lominadze, A.P. Churikov, V.D. Pustovitov // Fizika Plazmy. 2009, v. 35, N 4, p. 307-350 (in Russian). 2. V.V. Dolgopolov, V.L. Sizonenko, K.N. Stepanov // Ukrainskij Fizicheskij Zhurnal. 1973, v. 18, N 1, p. 18- 28. 3. V.M. Zhdanov. Phenomena of transfer in the multicomponent plasma. Moscow: “Energoizdat, 1982 (in Russian). 4. L.I. Krupnik, A.V. Melnikov, C. Hidalgo, et al. // Problems of Atomic Science and Technology. Series “Plasma Physics” (15). 2009, N 1, p. 31-33. 5. J. Ghosh, R.C. Elton, H.R. Griem, et al.// Physics of Plasmas. 2004, v. 11, N 8, p. 3813-3818. 6. H.W. Drawin, M. Fumelli // Proc. Phys. Soc. 1965, v. 85, N 5, p. 997-1005. 7. V.P. Boldyrev, N.P. Poluektov, V.N. Kharchenko // Physics of Plasmas . 1985, v.11, N 4, p. 425-429. 8. N.P. Efremov, N.P. Poluektov // J. Phys. D: Appl. Phys. 1998, v. 31, N 8, p. 988-995. 9. A.I. Skibenko, V.L. Berezhnyj, I.P. Fomin, еt al. // Proceeding of the 5-th International Symposium “Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves”. Kharkov, 21-26 June, 2004, v. 2, p. 844-846. 10. O.S. Pavlichenko, A.I. Skibenko, I.P Fomin, et al. // Proceeding of the 5th International Workshop on Reflectometry Toki. Japan, 5-7 March, 2001, p. 85- 87. 11. E. Del Bosco, S.W. Simpsont, R.S. Dallaqua, A. Montes // J. Phys. D: Appl. Phys. 1991, v. 24, p. 2008-2013. 12. Yu.V. Kovtun, Yu.V. Larin, A.I. Skibenko, et al. // Technical Physics. 2010, v. 55, N 5, p. 735–737. 13. Yu.V. Kovtun, A.I. Skibenko, E.I. Skibenko, et al. // Problems of Atomic Science and Technology. Series “Plasma Electronics and New Methods of Acceleration” (7). 2010, N 4, p. 214-218. 14. Yu.V. Kovtun, Е.I. Skibenko, A.I. Skibenko, V.B. Yuferov // The Journal of the Kharkiv National University. Series “Nuclei, Particles, Fields” (880). 2009, v. 4(44), p. 97-102. 15. M. Krishnan // Phys. Fluids. 1983, v. 26, p. 2676-2682. Article received 22.0.9.10 ОПРЕДЕЛЕНИЕ СКОРОСТИ ВРАЩЕНИЯ ГАЗОМЕТАЛЛИЧЕСКОЙ МНОГОКОМПОНЕНТНОЙ ПЛАЗМЫ ОТРАЖАТЕЛЬНОГО РАЗРЯДА Ю.В. Ковтун, А.И. Скибенко, Е.И. Скибенко, Ю.В. Ларин, В.Б. Юферов Впервые для определения скорости вращения плазменных слоев с np = ncr 1,2 в среде газометаллической плазмы отражательного разряда была применена двухчастотная СВЧ-флуктационная рефлектометрия. Результаты измерений показали, что угловая частота вращения плазменных слоев различна и, таким образом, плазма вращается не как единое целое. Максимальная скорость вращения увеличивается с увеличением магнитного поля. Проведены оценки величин напряженности электрического поля в двух слоях и коэффициента α разделения частиц плазмы. ВИЗНАЧЕННЯ ШВИДКОСТІ ОБЕРТАННЯ ГАЗОМЕТАЛЕВОЇ БАГАТОКОМПОНЕНТНОЇ ПЛАЗМИ ВІДБИВНОГО РОЗРЯДУ Ю.В. Ковтун, А.І. Скібенко, Е.І. Скібенко, Ю.В. Ларін, В.Б. Юферов Вперше для визначення швидкості обертання плазмових прошарків з np = ncr 1,2 в середовищі газометалевої плазми відбивного розряду була застосована двохчастотна НВЧ-флуктаційна рефлектометрія. Результати вимірювань показали, що кутова частота обертання плазмових прошарків різна і, таким чином, плазма обертається не як єдине ціле. Максимальна швидкість обертання збільшується зі збільшенням магнітного поля. Проведено оцінки величин напруженості електричного поля в двох прошарках і коефіцієнта α розділення частинок плазми.