Determining the rotational velocity of gas-metal multicomponent plasma in a reflex discharge
For the first time the rotational velocity of plasma layers with np = ncr^1,2 in the gas-metal plasma medium of the reflex discharge was determined using the two-frequency microwave fluctuation reflectometry. The measurement results demonstrated that the angular frequency of plasma layer rotation is...
Збережено в:
| Дата: | 2010 |
|---|---|
| Автори: | , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2010
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/17488 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Determining the rotational velocity of gas-metal multicomponent plasma in a reflex discharge / Yu.V. Kovtun, A.I. Skibenko, E.I. Skibenko, Yu.V. Larin, V.B. Yuferov // Вопросы атомной науки и техники. — 2010. — № 6. — С. 153-155. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-17488 |
|---|---|
| record_format |
dspace |
| spelling |
Kovtun, Yu.V. Skibenko, A.I. Skibenko, E.I. Larin, Yu.V. Yuferov, V.B. 2011-02-26T22:33:21Z 2011-02-26T22:33:21Z 2010 Determining the rotational velocity of gas-metal multicomponent plasma in a reflex discharge / Yu.V. Kovtun, A.I. Skibenko, E.I. Skibenko, Yu.V. Larin, V.B. Yuferov // Вопросы атомной науки и техники. — 2010. — № 6. — С. 153-155. — Бібліогр.: 15 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/17488 For the first time the rotational velocity of plasma layers with np = ncr^1,2 in the gas-metal plasma medium of the reflex discharge was determined using the two-frequency microwave fluctuation reflectometry. The measurement results demonstrated that the angular frequency of plasma layer rotation is varying and therefore the plasma rotates not as a single whole. The maximum rotation velocity increases with magnetic field increasing. The values of the electric field strength in two layers and the plasma particle separation coefficient α were determined. Впервые для определения скорости вращения плазменных слоев с np = ncr^1,2 в среде газометаллической плазмы отражательного разряда была применена двухчастотная СВЧ-флуктационная рефлектометрия. Результаты измерений показали, что угловая частота вращения плазменных слоев различна и, таким образом, плазма вращается не как единое целое. Максимальная скорость вращения увеличивается с увеличением магнитного поля. Проведены оценки величин напряженности электрического поля в двух слоях и коэффициента α разделения частиц плазмы. Вперше для визначення швидкості обертання плазмових прошарків з np = ncr^1,2 в середовищі газометалевої плазми відбивного розряду була застосована двохчастотна НВЧ-флуктаційна рефлектометрія. Результати вимірювань показали, що кутова частота обертання плазмових прошарків різна і, таким чином, плазма обертається не як єдине ціле. Максимальна швидкість обертання збільшується зі збільшенням магнітного поля. Проведено оцінки величин напруженості електричного поля в двох прошарках і коефіцієнта α розділення частинок плазми. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Низкотемпературная плазма и плазменные технологии Determining the rotational velocity of gas-metal multicomponent plasma in a reflex discharge Определение скорости вращения газометаллической многокомпонентной плазмы отражательного разряда Визначення швидкості обертання газометалевої багатокомпонентної плазми відбивного розряду Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Determining the rotational velocity of gas-metal multicomponent plasma in a reflex discharge |
| spellingShingle |
Determining the rotational velocity of gas-metal multicomponent plasma in a reflex discharge Kovtun, Yu.V. Skibenko, A.I. Skibenko, E.I. Larin, Yu.V. Yuferov, V.B. Низкотемпературная плазма и плазменные технологии |
| title_short |
Determining the rotational velocity of gas-metal multicomponent plasma in a reflex discharge |
| title_full |
Determining the rotational velocity of gas-metal multicomponent plasma in a reflex discharge |
| title_fullStr |
Determining the rotational velocity of gas-metal multicomponent plasma in a reflex discharge |
| title_full_unstemmed |
Determining the rotational velocity of gas-metal multicomponent plasma in a reflex discharge |
| title_sort |
determining the rotational velocity of gas-metal multicomponent plasma in a reflex discharge |
| author |
Kovtun, Yu.V. Skibenko, A.I. Skibenko, E.I. Larin, Yu.V. Yuferov, V.B. |
| author_facet |
Kovtun, Yu.V. Skibenko, A.I. Skibenko, E.I. Larin, Yu.V. Yuferov, V.B. |
| topic |
Низкотемпературная плазма и плазменные технологии |
| topic_facet |
Низкотемпературная плазма и плазменные технологии |
| publishDate |
2010 |
| language |
English |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Определение скорости вращения газометаллической многокомпонентной плазмы отражательного разряда Визначення швидкості обертання газометалевої багатокомпонентної плазми відбивного розряду |
| description |
For the first time the rotational velocity of plasma layers with np = ncr^1,2 in the gas-metal plasma medium of the reflex discharge was determined using the two-frequency microwave fluctuation reflectometry. The measurement results demonstrated that the angular frequency of plasma layer rotation is varying and therefore the plasma rotates not as a single whole. The maximum rotation velocity increases with magnetic field increasing. The values of the electric field strength in two layers and the plasma particle separation coefficient α were determined.
Впервые для определения скорости вращения плазменных слоев с np = ncr^1,2 в среде газометаллической плазмы отражательного разряда была применена двухчастотная СВЧ-флуктационная рефлектометрия. Результаты измерений показали, что угловая частота вращения плазменных слоев различна и, таким образом, плазма вращается не как единое целое. Максимальная скорость вращения увеличивается с увеличением магнитного поля. Проведены оценки величин напряженности электрического поля в двух слоях и коэффициента α разделения частиц плазмы.
Вперше для визначення швидкості обертання плазмових прошарків з np = ncr^1,2 в середовищі газометалевої плазми відбивного розряду була застосована двохчастотна НВЧ-флуктаційна рефлектометрія. Результати вимірювань показали, що кутова частота обертання плазмових прошарків різна і, таким чином, плазма обертається не як єдине ціле. Максимальна швидкість обертання збільшується зі збільшенням магнітного поля. Проведено оцінки величин напруженості електричного поля в двох прошарках і коефіцієнта α розділення частинок плазми.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/17488 |
| citation_txt |
Determining the rotational velocity of gas-metal multicomponent plasma in a reflex discharge / Yu.V. Kovtun, A.I. Skibenko, E.I. Skibenko, Yu.V. Larin, V.B. Yuferov // Вопросы атомной науки и техники. — 2010. — № 6. — С. 153-155. — Бібліогр.: 15 назв. — англ. |
| work_keys_str_mv |
AT kovtunyuv determiningtherotationalvelocityofgasmetalmulticomponentplasmainareflexdischarge AT skibenkoai determiningtherotationalvelocityofgasmetalmulticomponentplasmainareflexdischarge AT skibenkoei determiningtherotationalvelocityofgasmetalmulticomponentplasmainareflexdischarge AT larinyuv determiningtherotationalvelocityofgasmetalmulticomponentplasmainareflexdischarge AT yuferovvb determiningtherotationalvelocityofgasmetalmulticomponentplasmainareflexdischarge AT kovtunyuv opredelenieskorostivraŝeniâgazometalličeskoimnogokomponentnoiplazmyotražatelʹnogorazrâda AT skibenkoai opredelenieskorostivraŝeniâgazometalličeskoimnogokomponentnoiplazmyotražatelʹnogorazrâda AT skibenkoei opredelenieskorostivraŝeniâgazometalličeskoimnogokomponentnoiplazmyotražatelʹnogorazrâda AT larinyuv opredelenieskorostivraŝeniâgazometalličeskoimnogokomponentnoiplazmyotražatelʹnogorazrâda AT yuferovvb opredelenieskorostivraŝeniâgazometalličeskoimnogokomponentnoiplazmyotražatelʹnogorazrâda AT kovtunyuv viznačennâšvidkostíobertannâgazometalevoíbagatokomponentnoíplazmivídbivnogorozrâdu AT skibenkoai viznačennâšvidkostíobertannâgazometalevoíbagatokomponentnoíplazmivídbivnogorozrâdu AT skibenkoei viznačennâšvidkostíobertannâgazometalevoíbagatokomponentnoíplazmivídbivnogorozrâdu AT larinyuv viznačennâšvidkostíobertannâgazometalevoíbagatokomponentnoíplazmivídbivnogorozrâdu AT yuferovvb viznačennâšvidkostíobertannâgazometalevoíbagatokomponentnoíplazmivídbivnogorozrâdu |
| first_indexed |
2025-11-25T21:29:33Z |
| last_indexed |
2025-11-25T21:29:33Z |
| _version_ |
1850558026763730944 |
| fulltext |
DETERMINING THE ROTATIONAL VELOCITY OF GAS-METAL
MULTICOMPONENT PLASMA IN A REFLEX DISCHARGE
Yu.V. Kovtun, A.I. Skibenko, E.I. Skibenko, Yu.V. Larin, V.B. Yuferov
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
E-mail: Ykovtun@kipt.kharkov.ua
For the first time the rotational velocity of plasma layers with np = ncr
1,2 in the gas-metal plasma medium of the
reflex discharge was determined using the two-frequency microwave fluctuation reflectometry. The measurement
results demonstrated that the angular frequency of plasma layer rotation is varying and therefore the plasma rotates not
as a single whole. The maximum rotation velocity increases with magnetic field increasing. The values of the electric
field strength in two layers and the plasma particle separation coefficient α were determined.
PACS: 52.80.Sm
One of the features of the plasma, formed and located
in the crossed E×H, is its drift rotation. Under certain
conditions in the rotating plasma the development of
different instabilities can take place that results, for
example, in the plasma ion component heating [1,2]. In
the case of multicomponent plasma the plasma column
rotation leads to the spatial separation of the ion
component [3]. Efficiency of the radial ion separation
directly depends on the rotational velocity. In connection
with the above, the determination of the rotational
velocity of multicomponent plasma is of undoubted
interest.
To determine the plasma rotation velocity one applies
different techniques: charge-exchanging spectro-scopy
based on the plasma sounding by high-energy heavy ion
beams [4] and on the determination of the Doppler shift of
the spectral lines of heavy ions; measurement of the
Doppler shift of the spectral line of excited atom or ion
[5-8]; microwave Doppler reflectometry based on the
sounding wave frequency shift in the case of wave
reflection from the moving plasma layer [9]; microwave
fluctuation reflectometry [10]; use of spaced electric
probes, measurement of the cross correlating function of
signals from the probe [11].
Experimental determination of the plasma rotation
velocity in the reflex discharge (Penning discharge) has
been carried out in [6-9]. The Doppler spectroscopy was
used for both the stationary discharge in hydrogen [6],
and the pulsed discharge in pure gases Ar, Kr, Xe and
mixed gases Ar+Xe, Xe+H2, Ar+H2 [7,8]. In [9] (pulsed
discharge in hydrogen) the microwave Doppler
spectroscopy was used. Experiments in the reflex
discharge aimed to determining the rotational velocity
were carried out for the plasma formed in the mono- or
two-component gaseous medium. The velocity of metal
plasma rotation was determined in the vacuum-arc
centrifuge for pure metals Mg, Zn, Cd, Pb using electrical
probes. Thus, there have not been carried experiments in
the reflex discharge in order to determine the gas-metal
plasma rotation velocity.
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2010. № 6. 153
Series: Plasma Physics (16), p. 153-155.
A purpose of the present work was to measure the
parametric dependences on the rotational velocity of the
gas-metal multicomponent plasma formed in the pulsed
reflex discharge.
A peculiarity of the work is the use, for the first time,
of the two-frequency microwave fluctuation reflectometry
for determining the rotational velocity of plasma layers
with с np = ncr
1,2 in the reflex discharge. The microwave
fluctuation reflectometry is based on the determination of
the intercorrelation function of two poloidally spaced
signals reflected from the plasma layer of an equal
density. The plasma sounding frequency was chosen so
that, firstly, the formed plasma should contain a layer
being equal to np = ncr, secondly, the plasma layers with
different ncr should be spaced at some distance. Two
chosen sounding frequencies were f 1 = 37,13 GHz and
f2 = 72,88 GHz with ncr
1=1,7×1013 cm-3 and
ncr
2 = 6,5×1013 cm-3 respectively. Plasma location was
performed by the microwave (O-mode) across the plasma
column in one and the same cross-section for both
frequencies. As distinct from the measurements by the
Doppler frequency shift characterized by the tilt sounding
and reflection points not coinciding with the layer having
np = ncr, the correlation method is based on the normal
sounding. Therefore, it is possible to determine
simultaneously the spatial position of the layer and its
rotational velocity.
Gas-metal plasma was formed as a result of the
discharge in the working medium of a substance
composed of H2, Ar or a gaseous mixture of 88.9%Kr-
7%Xe-4%N2-0,1%O2 and a sputtered cathode material.
Cathodes were made of a monometallic Ti or a composite
material, namely, Cu with Ti deposited by the vacuum-arc
method. A maximum plasma density was
np ≥ 6,5 ×1013 сm-3, discharge voltage Udis. ≤4 kV, duration
and maximum value of the discharge current intensity
were ~ 1 ms and Idis ~ 1,8 kA, respectively. A pulsed
mirror-configuration magnetic field (mirror ratio of 1.25)
of 18 ms duration was formed by a solenoid composed of
six coils having a maximum magnetic field induction BB0 ≤
0,65 T.
Due to the use of two types of cathodes in both cases
the cathode material (Ti) enters into the plasma that is
confirmed by the spectrometric measurements [12,13].
The titanium content in the discharge, for composite
cathodes determined in [14], is at a level of 40-50% and
the same value is confirmed by the volume-mass
measurements of the cathode material consumption after
more than 3000 discharge pulses.
The experimental values of the rotational velocity of
the plasma layer with np ≥ 1,7×1013 cm-3 for mixtures of
H2+Ti and Ar+Ti and different initial values of the
magnetic field are presented in Figs. 1 and 2 (experiments
mailto:Ykovtun@kipt.kharkov.ua
with a composite cathode). Maximum rotational velocities
of the gas-metal plasma for the mixture of H2+Ti were
vφ1=25×105 cm/s (B1=0,253T) and vφ2=8,7×105 cm/s
(B2=0.126 T), for the mixture of Ar+Ti vφ1=18,5×105 cm/s
(B1=0,247 T) and vφ2=7,76×105 cm/s (B2=0,107T).
3,8 4,0 4,2 4,4 4,6 4,8 5,0 5,2 5,4
1
10
B2, T
B1, T
t, ms
v ϕ
, 1
05 c
m
/s
B=B1
B=B2
0,23 0,24 0,25 0,26 0,27 0,28 0,29 0,3 0,31
0,115 0,121 0,126 0,13 0,135 0,141 0,147 0,15 0,154
Fig. 1. Time dependence of the rotational velocity of the
plasma layer with np ≥ 1,7 1013 cm-3 for the mixture of
H2+Ti and different initial values of the magnetic field
(p =2×10-3 Torr, Udis. = 3,6 kV, composite cathodes)
3,6 3,8 4,0 4,2 4,4 4,6 4,8 5,0 5,2 5,4
0,1
1
10
B=B1
B=B2
0,22 0,23 0,24 0,25 0,26 0,27 0,28 0,29 0,3 0,31
0,102 0,107 0,112 0,118 0,121 0,126 0,131 0,137 0,14 0,143 B2, T
B1, T
t, ms
v ϕ
, 1
05 c
m
/s
Fig. 2. Time dependence of the rotational velocity of the
plasma layer with np ≥ 1,7 1013 cm-3 for the mixture of
Ar+Ti and different initial values of the magnetic field
(p =1×10-3 Torr, Udis. = 3,2 kV, composite cathodes)
As is seen from the Figs. 1 and 2 the maximum
rotational velocity of the plasma layer increases with
magnetic field increasing. Naturally, that in this case the
electromagnetic force increases too, Ir×B (Ir=2πrLir(r)
[6], assuming Ir=const). Consequently, the velocity
should be increased proportionally to B, i.e.
B
154
B1/B2 ≈ vφ1/vφ2. In the experiment with the gas-metal
mixture (Ar+Ti) the ratios B1B /B2=2,31 and vφ1/vφ2=2,38
were obtained that is in good agreement with the above
assumption. For the H2+Ti plasma the ratios BB1/B2=2,08
and vφ1/vφ2=2,87 were obtained. The rotational velocity
increase with magnetic field increasing has been also
observed in the earlier experiments [5-7].
The time dependences of the rotational velocity of
plasma layers with np ≥ 1,7×1013 cm-3 and
np ≥ 6,5×1013 cm-3 for the mixtures of Ar+Ti and
Kr+Xe+N2+O2+Ti are presented in Figs. 3 and 4
(experiments with monometallic cathode). The maximum
values of the gas-metal plasma for the layer A with
np ≥ 1,7×1013 cm-3 are vφA = 8,7×105 cm/s (Ar+Ti),
vφA= 7,6×105 cm/s (Kr+Xe+N2+O2+Ti), for the layer Β
with np ≥ 6,5×1013 cm-3 they are vφB = 7,9×105 cm/s
(Ar+Ti), vφB= 6,7×105 cm/s (Kr+Xe+N2+O2+Ti). The
maximum radii of the layers A and B determined by the
change of a phase reflected from the microwave wave
were 4,4 and 3 cm respectively, for both gas-metal
mixtures. In the case, when the plasma rotates as a single
whole, the rotation frequency ωφ, of layers having
different radii should be equal for all the layers, and the
rotational velocity should increase linearly with radius
increasing. In the given case the rotation frequencies of
the layers A and B do not coincide with each other, i.e.
ωφA≠ωφB for both gas-metal layers. The rotation frequency
of the layer Β ωφB >ωφA, i.e. the layer B with a shorter
radius has a higher rotation frequency than the layer A
with a longer radius. Similar results were obtained in [6].
2,0 2,2 2,4 2,6 2,8 3,0 3,2 3,4
2
4
6
8
10
v ϕ
, 1
05 c
m
/s
B, T
ncr=1,7×1013cm-3
ncr=6,5×1013cm-3
0,122 0,133 0,143 0,153 0,164 0,174 0,185 0,195
t, ms
Fig. 3. Time dependence of the rotational velocity of the
plasma layer with np ≥ 1,7×1013cm-3 and np≥6,5×1013 cm-3
for the mixture of Ar+Ti (p =6×10-3 Torr, Udis. = 3,8 kV,
monometallic cathodes)
2,0 2,2 2,4 2,6 2,8 3,0 3,2 3,4
2
4
6
8
10
v ϕ
, 1
05 c
m
/s
t, ms
B, T
ncr=1,7×1013cm-3
ncr=6,5×1013cm-3
0,122 0,133 0,143 0,153 0,164 0,174 0,185 0,195
Fig. 4. Time dependence of the rotational velocity of the
plasma layer with np ≥ 1,7×1013 cm-3 and
np ≥ 6,5×1013 cm-3 for the mixture of Kr+Xe+N2+O2+Ti
(p =6×10-3 Torr, Udis. = 3,8 kV, monometallic cathodes)
The rotational velocity of the plasma electron component,
respectively the rotation frequency, is determined as
vφ=-E/B and from this the electric field strength can be
evaluated. For the case of the Ar+Ti plasma it is equal to
13,3 V/cm (layer Α) and 12,2 V/cm (layer Β), and for the
Kr+Xe+N2+O2+Ti plasma to 11,6 V/cm (layer A) and
10,2V/cm (layer B) respectively. In the rotating plasma a
spatial ion separation occurs due to the centrifugal effects.
The separation coefficient α is determined as in [15]:
α=exp(Δm vφ2/2kT), (1)
155
where Δm is the mass difference of various elements, vφ is
the rotational velocity, T is the temperature, k is the
Boltzmann constant. Using the experimental value of the
plasma rotational velocity and taking Ti ~ 10 eV, we
obtain the plasma particle separation coefficient α: for
Ar+Ti α ≤ 4, for Kr+Ti α ≤ 3 and for H+Ti α is from 7
to ≥ 103.
CONCLUSIONS
The conclusions, based on our experimental
measurements and evaluations, are as follows.
1. For the first time the rotational velocity of the plasma
layer with np = ncr in the gas-metal plasma medium of the
reflex discharge at frequencies f = 37,13 and 72,88 GHz
was determined using the two-frequency microwave
fluctuation reflectometry.
2. The measured angular rotation frequency of plasma
layers with np ≥ 1,7×1013 cm-3 and np ≥ 6,5×1013 cm-3 is
different for these layers and ωφA≠ ωφB. Consequently, the
plasma rotates not as a single whole that is in accordance
with the results of other papers for a discharge of similar
type.
3. The electric field strengths in two plasma layers of a
different density were determined. It has been established
that their values are close and are at a level of
10…13 V/cm.
4. The maximum rotational velocity increases with
magnetic field increasing and reaches the values
vφ1=25×105 cm/s (H2+Ti), vφ1=18,5 105 cm/s (Ar+Ti).
5. The plasma particle separation coefficient α was
evaluated: for Ar+Ti α is from 1.3…1.4 to 4, for Kr+Ti α
is ~ 2-3, and for H+Ti α is from 7 to ≥ 103.
REFERENCES
1. A.B. Mikhailovsky, J.G. Lominadze, A.P. Churikov,
V.D. Pustovitov // Fizika Plazmy. 2009, v. 35, N 4,
p. 307-350 (in Russian).
2. V.V. Dolgopolov, V.L. Sizonenko, K.N. Stepanov //
Ukrainskij Fizicheskij Zhurnal. 1973, v. 18, N 1, p. 18-
28.
3. V.M. Zhdanov. Phenomena of transfer in the
multicomponent plasma. Moscow: “Energoizdat, 1982
(in Russian).
4. L.I. Krupnik, A.V. Melnikov, C. Hidalgo, et al. //
Problems of Atomic Science and Technology. Series
“Plasma Physics” (15). 2009, N 1, p. 31-33.
5. J. Ghosh, R.C. Elton, H.R. Griem, et al.// Physics of
Plasmas. 2004, v. 11, N 8, p. 3813-3818.
6. H.W. Drawin, M. Fumelli // Proc. Phys. Soc. 1965,
v. 85, N 5, p. 997-1005.
7. V.P. Boldyrev, N.P. Poluektov, V.N. Kharchenko //
Physics of Plasmas . 1985, v.11, N 4, p. 425-429.
8. N.P. Efremov, N.P. Poluektov // J. Phys. D: Appl. Phys.
1998, v. 31, N 8, p. 988-995.
9. A.I. Skibenko, V.L. Berezhnyj, I.P. Fomin, еt al. //
Proceeding of the 5-th International Symposium
“Physics and Engineering of Microwaves, Millimeter,
and Submillimeter Waves”. Kharkov, 21-26 June, 2004,
v. 2, p. 844-846.
10. O.S. Pavlichenko, A.I. Skibenko, I.P Fomin, et al. //
Proceeding of the 5th International Workshop on
Reflectometry Toki. Japan, 5-7 March, 2001, p. 85-
87.
11. E. Del Bosco, S.W. Simpsont, R.S. Dallaqua,
A. Montes // J. Phys. D: Appl. Phys. 1991, v. 24,
p. 2008-2013.
12. Yu.V. Kovtun, Yu.V. Larin, A.I. Skibenko, et al. //
Technical Physics. 2010, v. 55, N 5, p. 735–737.
13. Yu.V. Kovtun, A.I. Skibenko, E.I. Skibenko, et al. //
Problems of Atomic Science and Technology. Series
“Plasma Electronics and New Methods of
Acceleration” (7). 2010, N 4, p. 214-218.
14. Yu.V. Kovtun, Е.I. Skibenko, A.I. Skibenko,
V.B. Yuferov // The Journal of the Kharkiv National
University. Series “Nuclei, Particles, Fields” (880).
2009, v. 4(44), p. 97-102.
15. M. Krishnan // Phys. Fluids. 1983, v. 26,
p. 2676-2682.
Article received 22.0.9.10
ОПРЕДЕЛЕНИЕ СКОРОСТИ ВРАЩЕНИЯ ГАЗОМЕТАЛЛИЧЕСКОЙ
МНОГОКОМПОНЕНТНОЙ ПЛАЗМЫ ОТРАЖАТЕЛЬНОГО РАЗРЯДА
Ю.В. Ковтун, А.И. Скибенко, Е.И. Скибенко, Ю.В. Ларин, В.Б. Юферов
Впервые для определения скорости вращения плазменных слоев с np = ncr
1,2 в среде газометаллической
плазмы отражательного разряда была применена двухчастотная СВЧ-флуктационная рефлектометрия.
Результаты измерений показали, что угловая частота вращения плазменных слоев различна и, таким образом,
плазма вращается не как единое целое. Максимальная скорость вращения увеличивается с увеличением
магнитного поля. Проведены оценки величин напряженности электрического поля в двух слоях и
коэффициента α разделения частиц плазмы.
ВИЗНАЧЕННЯ ШВИДКОСТІ ОБЕРТАННЯ ГАЗОМЕТАЛЕВОЇ
БАГАТОКОМПОНЕНТНОЇ ПЛАЗМИ ВІДБИВНОГО РОЗРЯДУ
Ю.В. Ковтун, А.І. Скібенко, Е.І. Скібенко, Ю.В. Ларін, В.Б. Юферов
Вперше для визначення швидкості обертання плазмових прошарків з np = ncr
1,2 в середовищі газометалевої
плазми відбивного розряду була застосована двохчастотна НВЧ-флуктаційна рефлектометрія. Результати
вимірювань показали, що кутова частота обертання плазмових прошарків різна і, таким чином, плазма
обертається не як єдине ціле. Максимальна швидкість обертання збільшується зі збільшенням магнітного поля.
Проведено оцінки величин напруженості електричного поля в двох прошарках і коефіцієнта α розділення
частинок плазми.
|