Current waveforms for pulse microdischarge inside dielectric cell
Computer simulation for microplasma discharge inside coplanar dielectric cell was carried out via particles in cells (PiC) method. Discharge current waveforms have a shape of short pulses with length decreasing and maximum earlier appearance for larger voltages applied. Mostly ion current on the neg...
Gespeichert in:
| Datum: | 2010 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2010
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/17492 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Current waveforms for pulse microdischarge inside dielectric cell / O.I. Kelnyk, O.V. Samchuk // Вопросы атомной науки и техники. — 2010. — № 6. — С. 165-167. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-17492 |
|---|---|
| record_format |
dspace |
| spelling |
Kelnyk, O.I. Samchuk, O.V. 2011-02-26T22:46:49Z 2011-02-26T22:46:49Z 2010 Current waveforms for pulse microdischarge inside dielectric cell / O.I. Kelnyk, O.V. Samchuk // Вопросы атомной науки и техники. — 2010. — № 6. — С. 165-167. — Бібліогр.: 5 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/17492 Computer simulation for microplasma discharge inside coplanar dielectric cell was carried out via particles in cells (PiC) method. Discharge current waveforms have a shape of short pulses with length decreasing and maximum earlier appearance for larger voltages applied. Mostly ion current on the negative coplanar electrode has a smooth shape contrary to the mostly electron current on the positive one which has a sharp maximum at the end of electron avalanche. Address electrode current is significantly less than coplanar electrodes currents and has pulsations corresponding to the striation structures appearance. Проведено компьютерное моделирование микроплазменного разряда в диэлектрической ячейке методом крупных частиц (PiC). Временные зависимости для разрядных токов имеют вид коротких импульсов, для которых при увеличении приложенного напряжения длительность уменьшается, а максимум появляется раньше. В основном, ионный ток на копланарный катод имеет сглаженную форму в отличие от тока на копланарный анод (в основном, электронного), который имеет резкий максимум в конце электронной лавины. Ток на адресном электроде имеет гораздо меньшую величину, чем ток на копланарных электродах, и содержит пульсации, связанные с формированием неоднородных структур. Проведено комп'ютерне моделювання мікроплазмового розряду в діелектричній комірці методом великих частинок (PiC). Часові залежності для розрядних струмів мають вигляд коротких імпульсів, для яких при збільшенні прикладеної напруги тривалість зменшується, а максимум з'являється раніше. В основному, іонний струм на копланарний катод має згладжену форму на відміну від струму на копланарний анод (в основному, електронного), який має різкий максимум наприкінці електронної лавини. Струм на адресному електроді істотно менший за струм на копланарних електродах і містить пульсації, пов'язані із формуванням неоднорідних структур. This work was partially supported by LG Electronics Inc. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Низкотемпературная плазма и плазменные технологии Current waveforms for pulse microdischarge inside dielectric cell Форма импульсов тока для микроразряда в диэлектрической ячейке Форма імпульсів струму для мікророзряду в діелектричній комірці Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Current waveforms for pulse microdischarge inside dielectric cell |
| spellingShingle |
Current waveforms for pulse microdischarge inside dielectric cell Kelnyk, O.I. Samchuk, O.V. Низкотемпературная плазма и плазменные технологии |
| title_short |
Current waveforms for pulse microdischarge inside dielectric cell |
| title_full |
Current waveforms for pulse microdischarge inside dielectric cell |
| title_fullStr |
Current waveforms for pulse microdischarge inside dielectric cell |
| title_full_unstemmed |
Current waveforms for pulse microdischarge inside dielectric cell |
| title_sort |
current waveforms for pulse microdischarge inside dielectric cell |
| author |
Kelnyk, O.I. Samchuk, O.V. |
| author_facet |
Kelnyk, O.I. Samchuk, O.V. |
| topic |
Низкотемпературная плазма и плазменные технологии |
| topic_facet |
Низкотемпературная плазма и плазменные технологии |
| publishDate |
2010 |
| language |
English |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Форма импульсов тока для микроразряда в диэлектрической ячейке Форма імпульсів струму для мікророзряду в діелектричній комірці |
| description |
Computer simulation for microplasma discharge inside coplanar dielectric cell was carried out via particles in cells (PiC) method. Discharge current waveforms have a shape of short pulses with length decreasing and maximum earlier appearance for larger voltages applied. Mostly ion current on the negative coplanar electrode has a smooth shape contrary to the mostly electron current on the positive one which has a sharp maximum at the end of electron avalanche. Address electrode current is significantly less than coplanar electrodes currents and has pulsations corresponding to the striation structures appearance.
Проведено компьютерное моделирование микроплазменного разряда в диэлектрической ячейке методом крупных частиц (PiC). Временные зависимости для разрядных токов имеют вид коротких импульсов, для которых при увеличении приложенного напряжения длительность уменьшается, а максимум появляется раньше. В основном, ионный ток на копланарный катод имеет сглаженную форму в отличие от тока на копланарный анод (в основном, электронного), который имеет резкий максимум в конце электронной лавины. Ток на адресном электроде имеет гораздо меньшую величину, чем ток на копланарных электродах, и содержит пульсации, связанные с формированием неоднородных структур.
Проведено комп'ютерне моделювання мікроплазмового розряду в діелектричній комірці методом великих частинок (PiC). Часові залежності для розрядних струмів мають вигляд коротких імпульсів, для яких при збільшенні прикладеної напруги тривалість зменшується, а максимум з'являється раніше. В основному, іонний струм на копланарний катод має згладжену форму на відміну від струму на копланарний анод (в основному, електронного), який має різкий максимум наприкінці електронної лавини. Струм на адресному електроді істотно менший за струм на копланарних електродах і містить пульсації, пов'язані із формуванням неоднорідних структур.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/17492 |
| citation_txt |
Current waveforms for pulse microdischarge inside dielectric cell / O.I. Kelnyk, O.V. Samchuk // Вопросы атомной науки и техники. — 2010. — № 6. — С. 165-167. — Бібліогр.: 5 назв. — англ. |
| work_keys_str_mv |
AT kelnykoi currentwaveformsforpulsemicrodischargeinsidedielectriccell AT samchukov currentwaveformsforpulsemicrodischargeinsidedielectriccell AT kelnykoi formaimpulʹsovtokadlâmikrorazrâdavdiélektričeskoiâčeike AT samchukov formaimpulʹsovtokadlâmikrorazrâdavdiélektričeskoiâčeike AT kelnykoi formaímpulʹsívstrumudlâmíkrorozrâduvdíelektričníikomírcí AT samchukov formaímpulʹsívstrumudlâmíkrorozrâduvdíelektričníikomírcí |
| first_indexed |
2025-11-25T14:48:31Z |
| last_indexed |
2025-11-25T14:48:31Z |
| _version_ |
1850515280479911936 |
| fulltext |
CURRENT WAVEFORMS FOR PULSE MICRODISCHARGE
INSIDE DIELECTRIC CELL
O.I. Kelnyk, O.V. Samchuk
Taras Shevchenko National University of Kiev, Radio Physics Faculty, Kiev, Ukraine,
E-mail: oles@univ.kiev.ua
Computer simulation for microplasma discharge inside coplanar dielectric cell was carried out via particles in cells
(PiC) method. Discharge current waveforms have a shape of short pulses with length decreasing and maximum earlier
appearance for larger voltages applied. Mostly ion current on the negative coplanar electrode has a smooth shape
contrary to the mostly electron current on the positive one which has a sharp maximum at the end of electron avalanche.
Address electrode current is significantly less than coplanar electrodes currents and has pulsations corresponding to the
striation structures appearance.
PACS: 52.65.-y, 52.77.-j, 52.80.-s
1. INTRODUCTION
Microscopic gas discharges are being applied widely
in various plasma technological processes as well as in
plasma displays (PDP, [1]). One of the most important
problems for such discharges' applications is increasing of
their energetic efficacy. Optimization of the applied
voltage (and, consequently, discharge current) waveform
is one of ways to make a microdischarge more
energetically efficient.
Among previous works, one can find both computer
simulation (see, e.g.[2]) and experimental measurements
(e.g.[3]) for the discharge current waveforms inside
dielectric cell. Important results already obtained there are
the appearance of lag between anode and cathode currents
for relatively small voltages (lag vanishes for larger
address voltages) and the fact that address electrode
current is small in comparison with the current to
coplanar electrodes [2]. If additional electrodes are used,
gas discharge can proceed in two phases and current
temporal dependence has two maximums [3]. But the ion
and electron components for discharge currents and
features of address electrode current are not yet
completely investigated.
2. SIMULATION PARAMETERS
In this work discharge current waveforms are
investigated for the case of the gas microdischarge inside
the cell with three dielectrically coated electrodes.
Computer simulation is carried out via the particles in
cells (PiC) method. For such an investigation, original 2D
electrostatic PiC code [4] with Monte Carlo collision
simulation was applied. About 100 types of elementary
processes were taken into account [5]. Dielectric cell
dimensions were considered 0.7×0.2 mm (typical PDP
cell size). Gas mixture contained 95% neon and 5% xenon
with total pressure of 500 Torr. Negative discharge
driving voltage was applied to one of two coplanar bus
electrodes - coplanar cathode c1 (based on the front glass
plate of cell). Another bus electrode (coplanar anode c2)
and address electrode a (on the cell backplate) were
grounded. Driving voltage had a trapezoid shape with
100 ns forefront and 1s total length, and it's magnitude
was varied in 190…280 V voltage band (near the optimal
discharge ignition conditions).
3. TOTAL DISCHARGE CURRENT
AND CURRENTS TO THE COPLANAR
ELECTRODES
Waveforms for the total discharge current and the
current to coplanar cathode c1 are shown at Fig. 1 for
different discharge driving voltages. Total discharge
current temporal dependences (Fig. 1, a) have a shape of
pulses with relatively short (about 100 ns) length. One can
see that for larger discharge voltages total current pulses
are shorter and have more smooth shape with earlier
maximum appearance. Coplanar cathode current
waveforms (Fig. 1, b) have a similar shape but they are
smoother than total current pulses. From comparison
Fig. 1, a and Fig. 1, b one can see that c1 electrode current
is a main part of the total discharge current. On the other
hand, total current waveforms at the initial stage of pulses
have several additional peaks relatively to corresponding
ones for current to c1 electrode.
Fig. 1. Waveforms for total discharge current (a) and current to c1 electrode (b) at different applied voltages
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2010. № 6. 165
Series: Plasma Physics (16), p. 165-167.
mailto:oles@univ.kiev.ua
Fig. 2. Current waveforms on c1 and c2 electrodes for driving voltages 190 V (a) and 250 V (b)
Fig. 3. Electron and ion current waveforms on c2 electrode for driving voltages of 190 V (a) and 250 V (b)
So the general shape of waveforms for total discharge
current is defined mostly by c1 current with the exception
of additional sharp peaks at initial discharge pulse stage.
Current to the coplanar cathode c1 forms the main smooth
part of the total current. Such smoothness of c1 current
results from its almost completely ion consistence due to
the negative potential on that electrode. Additional sharp
peaks in the total current waveforms are deposited by the
mostly electron current on the coplanar anode c2. Fig. 2
shows c1 and c2 currents for driving voltages 190 V (a)
and 250 V (b). For relatively small applied voltage of
190 V, c1 ion current waveform has two maxima and the
first maximum is larger than the second one. For larger
driving voltages such as 200…220 V, the second
maximum substantially increases and oversize the first
maximum. For even larger voltages, the first maximum
transforms into plateau and, for voltages of about 250 V it
almost disappears (Fig. 2, b) acting only as current growth
rate variation. From Fig. 2, one can see that the first
maximum of c1 current corresponds to the quick increase
of c2 current, but the second c1 current maximum appears
when c2 current is already decreasing.
For small driving voltage such as 190 V, the external
electric field is quickly shielded by charged particles
formed during gas discharge initial phase so the resulting
voltage isn't capable for support of the next phase of
discharge evolution. Consequently the plateau is formed
instead of the second current maximum (Fig. 2, a, interval
AB). Then the discharge quickly decays and
inhomogeneities (like striation structures) are not formed.
Contrary, for the larger voltages like 250 V, such a
structures are effectively formed and the second phase of
discharge evolution takes place. On Fig. 2, b, interval AB
corresponds to the electron avalanche between c1 and a
electrodes. Electrons appeared during that interval
contribute to the formation of striation structure in
discharge (interval BC). The first maximum (plateau,
growth rate variation) on c1 current waveform temporal
dependence, which is depicted by interval CD,
corresponds to the burning gas discharge in striation
structure when the ion c1 current growth rate becomes
smaller.
From comparison Fig. 1, a and Fig. 2 one can see that
additional sharp maximum of the total discharge current
correspond to sharp peak of c2 current (see Fig. 2, b).
This peak appears with some delay after the first
maximum of c1 current. This effect corresponds to the
result obtained in [2]. Practically, c2 current begins to
increase later than c1 current (respectively points E and A
on Fig. 2, b) but increases much faster. For smaller
voltages delay is significant and c2 current maximum
appears between first and second maxima of c1 current
(Fig. 2, a). For larger voltages (250 V) c2 current grows
very fast and its peak practically coincides with the first
maximum of c1 current (Fig. 2, b, point C). Later phases
of discharge main maximum and decay for c1 and c2
currents for that voltage are almost synchronous.
4. ELECTRON AND ION CURRENTS'
COMPONENTS
Waveforms for electron and ion components of c2
electrode current (for c1 electrode current electron
component is negligible) are shown on Fig. 3. One can
see that electron component forms most of that current
but ion component is also noticeable. Fast growth of c2
current corresponds to its mostly electron consistence.
Small ion component of c2 current have its maximum
with some delay relatively to the electron component.
Waveforms for ion and electron components of
current on the address electrode a are shown on Fig. 4.
166
Fig. 4. Electron and ion current waveforms on address electrode for driving voltages of 190 V(a) and 250 V(b)
Such a current is much less than c1 and c2 currents so
the discharge burns mainly between coplanar electrodes.
One can see the oscillations with varying period for both
electron and ion current components. These oscillations
are related with the oscillations of electric potential near
address electrode and, for the larger driving voltages like
250V, correspond to the striation structures' formation.
Decrease of that current at the late discharge phase
corresponds to the potential profile smoothing due to the
discharge decay.
5. CONCLUSIONS
For the most effective voltage band, total current of
microplasma discharge mostly consists of currents to c1
and c2 coplanar electrodes. Current to c1 electrode
practically has only the ion component, c2 current is
formed mostly by electrons with the small ion component.
General waveform of the total current is determined by c1
current while c2 current adds a sharp peak before the
main maximum of discharge current pulse. Small current
to the address electrode have a pulsations corresponding
to the oscillations of electric potential in this region.
This work was partially supported by LG Electronics
Inc.
REFERENCES
1. J.-P. Boeuf. Plasma display panels: physics, recent
developments and key issues // Journal of Physics
D:Applied Physics. 2003, v. 36, p. R53–R79.
2. Heung-Sik Tae, Hyun Ju Seo, Dong-Cheol Jeong,
Jeoung Hyun Seo, Hyun Kim, Ki-Woong Whang.
Analysis of Microdischarge Characteristics Induced by
Synchronized Auxiliary Address Pulse Based on Cross-
Sectional Infrared Observation in AC Plasma Display
Panel // IEEE Transactions on Plasma Science. 2005,
v. 33, N 2, p. 931-939.
3. J.T. Ouyang, Th. Callegari, B. Caillier, J.-P. Boeuf.
Large gap plasma display cell with auxiliary electrodes:
macro-cell experiments and two-dimensional modelling
// Journal of Physics D: Applied Physics. 2003, v. 36,
p. 1959–1966.
4. O.V. Samchuk, O.I. Kelnyk, I.O. Anisimov. Pulse
Discharge in the Dielectric Cell: Simulation via PIC
Method // Problems of Atomic Science and Technology.
Series “Plasma Physics” (13). 2007, N 1, p. 148-150.
5. O.V. Samchuk, O.I. Kelnyk. Excimer Ions’ Generation
in the Ne-Xe Pulse Microdischarge Inside the Dielectric
Cell // III CESPC Book of Abstracts/ Kyiv. 2009, p.110.
Article received 13.09.10
ФОРМА ИМПУЛЬСОВ ТОКА ДЛЯ МИКРОРАЗРЯДА В ДИЭЛЕКТРИЧЕСКОЙ ЯЧЕЙКЕ
А.И. Кельник, О.В. Самчук
Проведено компьютерное моделирование микроплазменного разряда в диэлектрической ячейке методом
крупных частиц (PiC). Временные зависимости для разрядных токов имеют вид коротких импульсов, для
которых при увеличении приложенного напряжения длительность уменьшается, а максимум появляется
раньше. В основном, ионный ток на копланарный катод имеет сглаженную форму в отличие от тока на
копланарный анод (в основном, электронного), который имеет резкий максимум в конце электронной лавины.
Ток на адресном электроде имеет гораздо меньшую величину, чем ток на копланарных электродах, и содержит
пульсации, связанные с формированием неоднородных структур.
ФОРМА ІМПУЛЬСІВ СТРУМУ ДЛЯ МІКРОРОЗРЯДУ В ДІЕЛЕКТРИЧНІЙ КОМІРЦІ
О.І. Кельник, О.В. Самчук
Проведено комп'ютерне моделювання мікроплазмового розряду в діелектричній комірці методом великих
частинок (PiC). Часові залежності для розрядних струмів мають вигляд коротких імпульсів, для яких при
збільшенні прикладеної напруги тривалість зменшується, а максимум з'являється раніше. В основному, іонний
струм на копланарний катод має згладжену форму на відміну від струму на копланарний анод (в основному,
електронного), який має різкий максимум наприкінці електронної лавини. Струм на адресному електроді
істотно менший за струм на копланарних електродах і містить пульсації, пов'язані із формуванням
неоднорідних структур.
167
O.I. Kelnyk, O.V. Samchuk
5. CONCLUSIONS
For the most effective voltage band, total current of microplasma discharge mostly consists of currents to c1 and c2 coplanar electrodes. Current to c1 electrode practically has only the ion component, c2 current is formed mostly by electrons with the small ion component. General waveform of the total current is determined by c1 current while c2 current adds a sharp peak before the main maximum of discharge current pulse. Small current to the address electrode have a pulsations corresponding to the oscillations of electric potential in this region.
REFERENCES
|