The domain of dependence inequality and asymptotic stability for a viscoelastic solid
The existence, uniqueness and asymptotic stability is shown for the integrodifferential system of the viscoelasticity. Moteover a domain of dependence theorem is proved by using the properties of the free energy related with such a system. This theorem provides a finite signal speed and then the...
Збережено в:
| Опубліковано в: : | Нелінійні коливання |
|---|---|
| Дата: | 1998 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
1998
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/174920 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | The domain of dependence inequality and asymptotic stability for a viscoelastic solid / M. Fabrizio, B. Lazzari // Нелінійні коливання. — 1998. — Т. 1, № 1. — С. 117-133. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-174920 |
|---|---|
| record_format |
dspace |
| spelling |
Fabrizio, M. Lazzari, B. 2021-01-28T16:07:42Z 2021-01-28T16:07:42Z 1998 The domain of dependence inequality and asymptotic stability for a viscoelastic solid / M. Fabrizio, B. Lazzari // Нелінійні коливання. — 1998. — Т. 1, № 1. — С. 117-133. — Бібліогр.: 18 назв. — англ. 1562-3076 https://nasplib.isofts.kiev.ua/handle/123456789/174920 517.9 The existence, uniqueness and asymptotic stability is shown for the integrodifferential system of the viscoelasticity. Moteover a domain of dependence theorem is proved by using the properties of the free energy related with such a system. This theorem provides a finite signal speed and then the hyperbolicity of the integrodifferential system. Присвячена питанням існування, єдиності та асимптотичної стійкості розв’язків в ’язкоеластичної системи. Research performed under the auspices of G.N.F.M.-C.N.R. and partially supported by Italian M.U.R.S.T. through the 40% project “Mathematical methods in mechanics of continuous systems". en Інститут математики НАН України Нелінійні коливання The domain of dependence inequality and asymptotic stability for a viscoelastic solid Область залежності нерівності та асимптотичної стійкості для в'язкоеластичного твердого тіла Область зависимости неравенства и асимптотической устойчивости для вязкоэластичного твёрдого тела Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
The domain of dependence inequality and asymptotic stability for a viscoelastic solid |
| spellingShingle |
The domain of dependence inequality and asymptotic stability for a viscoelastic solid Fabrizio, M. Lazzari, B. |
| title_short |
The domain of dependence inequality and asymptotic stability for a viscoelastic solid |
| title_full |
The domain of dependence inequality and asymptotic stability for a viscoelastic solid |
| title_fullStr |
The domain of dependence inequality and asymptotic stability for a viscoelastic solid |
| title_full_unstemmed |
The domain of dependence inequality and asymptotic stability for a viscoelastic solid |
| title_sort |
domain of dependence inequality and asymptotic stability for a viscoelastic solid |
| author |
Fabrizio, M. Lazzari, B. |
| author_facet |
Fabrizio, M. Lazzari, B. |
| publishDate |
1998 |
| language |
English |
| container_title |
Нелінійні коливання |
| publisher |
Інститут математики НАН України |
| format |
Article |
| title_alt |
Область залежності нерівності та асимптотичної стійкості для в'язкоеластичного твердого тіла Область зависимости неравенства и асимптотической устойчивости для вязкоэластичного твёрдого тела |
| description |
The existence, uniqueness and asymptotic stability is shown for the integrodifferential system of the
viscoelasticity. Moteover a domain of dependence theorem is proved by using the properties of the free
energy related with such a system. This theorem provides a finite signal speed and then the hyperbolicity
of the integrodifferential system.
Присвячена питанням існування, єдиності та асимптотичної стійкості розв’язків в ’язкоеластичної системи.
|
| issn |
1562-3076 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/174920 |
| citation_txt |
The domain of dependence inequality and asymptotic stability for a viscoelastic solid / M. Fabrizio, B. Lazzari // Нелінійні коливання. — 1998. — Т. 1, № 1. — С. 117-133. — Бібліогр.: 18 назв. — англ. |
| work_keys_str_mv |
AT fabriziom thedomainofdependenceinequalityandasymptoticstabilityforaviscoelasticsolid AT lazzarib thedomainofdependenceinequalityandasymptoticstabilityforaviscoelasticsolid AT fabriziom oblastʹzaležnostínerívnostítaasimptotičnoístíikostídlâvâzkoelastičnogotverdogotíla AT lazzarib oblastʹzaležnostínerívnostítaasimptotičnoístíikostídlâvâzkoelastičnogotverdogotíla AT fabriziom oblastʹzavisimostineravenstvaiasimptotičeskoiustoičivostidlâvâzkoélastičnogotverdogotela AT lazzarib oblastʹzavisimostineravenstvaiasimptotičeskoiustoičivostidlâvâzkoélastičnogotverdogotela AT fabriziom domainofdependenceinequalityandasymptoticstabilityforaviscoelasticsolid AT lazzarib domainofdependenceinequalityandasymptoticstabilityforaviscoelasticsolid |
| first_indexed |
2025-11-24T11:46:45Z |
| last_indexed |
2025-11-24T11:46:45Z |
| _version_ |
1850845888713326592 |
| fulltext |
œ ‰ Ô Ê Ô ‚ Ê Ô „ Á ‰ · € ⁄ Ê Ê Ó . ì . 6 6 5
Q@? 2.4+6
G=: 9B@6>A B; 9:C:A9:A8: >A:DH6?>GJ 6A9
6FJ@CGBG>8 FG67>?>GJ ;BE 6 I>F8B:?6FG>8 FB?>9"
ôåñãúù† íãñêë òôúùâ òêõâçòôúùâ
ùã ã úìóöùôùìüòôä úùâîïôúùâ
èñ° ç r°íïôêñãúùìüòôéô ùçêõèôéô ùâñã
Œ + ;NO]VeVZ$ ç & ?NeeN]V
@`k* I\oc* Qidq* >jgjbi\(
0,-.3( Eo\gt( >jgjbi\( Lg\nn\ Ljmo\ O* @ji\oj( 1
`)h\dg6 a\]iudj<_h*pid]j*do7
`)h\dg6 g\uu\md<_h*pid]j*do
)2/ /A3<=/7-/! >73:>/7/<< +7. +<B69=8=3- <=+,353=B 3< <28@7 08; =2/ 37=/1;8.300/;/7=3+5 <B<=/6 80 =2/
?3<-8/5+<=3-3=B# (8=/8?/; + .86+37 80 ./9/7./7-/ =2/8;/6 3< 9;8?/. ,B ><371 =2/ 9;89/;=3/< 80 =2/ 0;//
/7/;1B ;/5+=/. @3=2 <>-2 + <B<=/6# )23< =2/8;/6 9;8?3./< + 0373=/ <317+5 <9//. +7. =2/7 =2/ 2B9/;,853-3=B
80 =2/ 37=/1;8.300/;/7=3+5 <B<=/6#
N\T]Pa`RYO [T^OYYaX c]Y_POYYa! bQTYZ]^c ^O O]TX[^Z^T`YZd ]^cUVZ]^c \ZSPFaSVcP P FaSVZRWO]"
^T`YZd ]T]^RXT#
)& >Y_]ZQ`P_VZY& Eo r\n ncjri di K)L oc\o oc` oc`mhj_ti\hd^ m`nomd^odjin dhkjn`_ ji oc`
^jinodopodq` `lp\odji ja oc` gdi`\m qdn^j`g\nod^dot7
P $s (o% 9 Cjvs%Rp$s(o% ' J C#$s( n %R p $s (o ) n%_n %.&
Á
dhkgt `sdno`i^` \i_ pidlp`i`nn ajm oc` `qjgpodq` kmj]g`h ja oc` gdi`\m qdn^j`g\nod^dot np]e`^o
oj ]jpi_\mt @dmd^cg`o ^ji_dodjin+ Eo r\n \gnj _`hjinom\o`_ oc\o oc` ipgg njgpodji dn \oom\^odq`
pi_`m oc` n\h` m`nomd^odjin+
Kpm \dh dn oj km`n`io \ _jh\di ja _`k`i_`i^` di`lp\gdot ajm njgpodjin oj oc` _ti\hd^
`lp\odjin ja gdi`\m qdn^j`g\nod^dot+ Ojh` m`npgon ja ocdn ojkd^ c\q` ]``i _dq`i di W/) 0Y) ]po \
b`i`m\g m`npgo ajm qdn^j`g\nod^ hjodjin c\n ijo t`o kmjq`_) ]`^\pn` di ocjn` k\k`mn oc` h\sdhph
kmjk\b\odji nk``_ ja _dnopm]\i^`n _`k`i_n ji odh`+ Ei oc` km`n`io k\k`m \ _daa`m`io h`ocj_ ja
\kkmj\^c dn \_jko`_) di a\^o jpm m`npgo m`gd`n oc` kmjk`mod`n ja D`ghcjgou am`` `i`mbt kjo`iod\g+
Pc`n` kjo`iod\gn ajm h\o`md\gn rdoc h`hjmt c\q` ]``i _``kgt nop_d`_ di W1Y \i_ \ h\di m`npgo
dn \i `skgd^do `skm`nndji ja oc` h\sdh\g D`ghcjgou am`` `i`mbt jigt pi_`m oc` \nnphkodji
oc\o oc` ^jinodopodq` `lp\odji %.& j]`tn oj oc` m`lpdm`h`ion ajggjrdib ]t oc` O`^ji_ H\r ja
oc`mhj_ti\hd^n+ Bjm ocdn m`\nji) oc` h\sdh\g am`` `i`mbt dn pn`_ c`m` oj kmjq` oc` _jh\di ja
_`k`i_`i^` di`lp\gdot) rcd^c kmjqd_`n oc` hdidh\g nk``_ rdoc rcd^c `i`mbt kmjk\b\o`n di ±+
' N`n`\m^c k`majmh`_ pi_`m oc` \pnkd^`n ja C+J+B+I+*?+J+N+ \i_ k\mod\ggt npkkjmo`_ ]t Eo\gd\i I+Q+N+O+P+
ocmjpbc oc` 1-# kmje`^o âI\oc`h\od^\g h`ocj_n di h`^c\id^n ja ^jiodipjpn ntno`hn *
Ñ I+ B\]mdudj) «+ H\uu\md) .665
Koc`m am`` `i`mbd`n \m` \gnj `scd]do`_) ]po pi_`m \__dodji\g \nnphkodjin ji oc` ^jinodopodq`
`lp\odji %.&+
Kpm h`ocj_ ^\i ]` `so`i_`_ oj \it am`` `i`mbt kjo`iod\g) \i_ pn`_ oj nop_t iji*gdi`\m
kmj]g`hn di qdn^j`g\nod^dot+ Kpm m`npgon ncjr oc\o oc` ctk`m]jgd^dot ja oc` _ti\hd^ `lp\odjin
ja gdi`\m qdn^j`g\nod^dot dn ^gjn`gt ^jii`^o`_ rdoc oc` `sdno`i^` ja \ am`` `i`mbt+
Ei ocdn k\k`m r` ^jind_`m oc` `qjgpodq` kmj]g`h np]e`^o oj ]jpi_\mt ^ji_dodjin ja `g\nod^
otk` \i_ oc` `sdno`i^`) pidlp`i`nn \i_ no\]dgdot oc`jm`hn km`n`io`_ di oc` admno k\mo `so`i_ oc`
^jmm`nkji_dib m`npgon ja W.Y+ Pc`t \m` j]o\di`_ ]t pndib oc` Bjpmd`m odh`*om\inajmh h`ocj_)
rcd^c dhkgd`n \i diajmh\odji \]jpo oc` njgpodji ja oc` `qjgpodji kmj]g`h di oc` nk\^` odh`*
_jh\di ± T N amjh odh`*c\mhjid^ njgpodjin rdoc ads`_ am`lp`i^t+
*& ;Z]X`WN_VZY ZS _UR []ZOWRX& Pc` _ti\hd^\g kmj]g`h ajm \ ^jiodipjpn gdi`\m
qdn^j`g\nod^ njgd_ di \ nhjjoc ]jpi_`_ _jh\di ± ? N0) rdoc `g\nod^ ]jpi_\mt ^ji_dodjin) dn
Å%s) o% : RP%s) o% ( a $s ( o%( ≤ ɱ ) o ; -)
Æ%ù) ≥&∑%ù& ( î$ñ%Ø$ñ( o% 9 -) ñ √ 6±) o ; -) %/&
p %s )m& : p Ç %s )* m & ) T√ ±) Í 9 -)
rc`m` ◊ _`ijo`n oc` _dnkg\^`h`io q`^ojm) P oc` nom`nn o`injm) , oc` ]j_t ajm^`) ·'%Ï)2& :
: p%s) o çn& oc` cdnojmt ja oc` _dnkg\^`h`io q`^ojm) pÄ oc` didod\g cdnojmt) i oc` jpor\m_
ijmh\g ji í® \i_ oc` n^\g\m api^odji — √ •,/%6±&¨ ÉÇÇ%6±& n\odnad`n
î $ñ% : \h ; - \+`+ di ‘«(* %0&
Pc` nom`nn*nom\di m`g\odji ja oc` gdi`\m qdn^j`g\nod^dot %.& dn ^c\m\^o`mdu`_ ]t oc` dino\io\*
i`jpn `g\nod^ hj_pgpn Cj \i_ oc` >jgouh\ii C#* S` \nnph` oc\o Cj \i_ C# \m` nthh`omd^
ajpmoc*jm_`m o`injmn') Cj √ ? Z & \i_
C $ ` a .%N( 8 ±& — H/%N(8 ±&+ %1&
Pc` m`g\s\odji api^odji
C %s)d& : Cj%s& ( J C#vs(n%_n
Á
dn ^jiodipjpn di ± T N ( ) _daa`m`iod\]g` di ± s N (( \i_ dn r`gg*_`adi`_ \gjib rdoc
Cjj%s& : Dh C%s)d& : C-%d& ( J C#vs(n%_n*
›
Pc` ]j_t dn \ njgd_) nj r` m`lpdm` oc\o Cjj dn pidajmhgt kjndodq` _`adido` di ±) d+`+
j 9 aajjFD E/ 9 dia =Cjjvs%=( ø √ OthXv-x+ %2&
êPcmjpbcjpo ocdn k\k`m Hdi dn oc` n`o ja \gg n`^ji_*jm_`m o`injm) Oth oc` np]n`o ja oc` nthh`omd^ n`^ji_*
jm_`m o`injm \i_ nth _`ijo`n oc` nthh`omd^ k\mo ja \ o`injm+ = ajpmoc*jm_`m o`injm C dn nthh`omd^ da C= 9 C=
\i_ = ôC> 9 > C = ø( ¿ Ω Hdi+
ĚĚĒ ∆’⁄Ê‹Êÿ‹Ê Ÿ›⁄◊“—‹‹Â( -554( Ë)-
H`o , √ H/%N&) r` _`ijo` ]t , oc` Bjpmd`m om\inajmh7 a$p:% 9 a `sk$àdpn%a$n%_n* Bjm
N
^\pn\g api^odjin) d+ `+ api^odjin _`adi`_ ji N() d_`iodad`_ rdoc api^odjin ji N rcd^c q\idnc ji
%ç--) -&) a à a ^ àd a nd rc`m` a ^ \i_ a n \m` oc` c\ga m\ib` Bjpmd`m ndi` \i_ ^jndi` om\inajmhn7
a ^$ω% 9 J a$n%^jnp:n_n( a nvp% : J a$n % ndi pn_n*
N( N(
= ^jin`lp`i^` ja oc` n`^ji_ g\r ja oc`mhj_ti\hd^n ajm ^t^gd^ kmj^`nn`n W2Y dn oc\o çC $%s)ω%
dn pidajmhgt kjndodq` _`adido` di ± ajm \it ω ; -) Ô+ `+) oc`m` `sdnon \ ^jiodipjpn api^odji bh6
N (( à:N (( np^c oc\o7
bhvpe%XX=XX. 8 * ha =C#OvT (KF%=( ø à Oth+ %3&
Ei`lp\gdot %3& bdq`n \n \ ^jin`lp`i^` oc\o C$%s) -& : gdh \%C#O %æ)ø& dn pidajmhgt i`b\odq`
n`hd_`adido` di ±+ S` m`lpdm` oc` hjm` m`nomd^odq` kmjk`mot ja _`adi`o`nn) d+`+ oc`m` `sdnon
94-; - np^c oc\o7
94-ƒÕw/ 9 * dia =C$%s) -&=) ø √ Oth+ %4&
ǺÊZ
Ijm`jq`m oc`mhj_ti\hd^ m`lpdm`h`ion \nnpm` oc\o Cj çCjj \i_ ocpn) Cj \m` pidajmhgt
kjndodq` _`adido`) d+`+
- 9 2jhww=ww/ 9 dia =C-%s&=) = í OthXv-x+ %5&
=o g`\no Cj) Cjj \i_ C$n%*)p8& \m` pidajmhgt ]jpi_`_ di ±) d+`+ ajm `q`mt ø √ Oth
npkC-%s&= = 8 2ÁÂ wÕ ww/) npkCjj%s&= = 9 aajjIwD w/)
ǺÊZ ǺÉZ
%6&
npkC 8%~)r &= = 8 bIvp%XX=XX.
ǺÊZ
rdoc bjI( bjj€ \i_ QX %ø& 9 ÁÁ+
P\fdib di \^^jpio oc` ^jinodopodq` `lp\odji %.& r` ^\i m`rmdo` ntno`h %/& di oc` ajmh
%s) o& : R WCj%&Rp %Ó) o& ( WC$ ' RddY%d) o% ( RP-%d)a&Y ( ,%s ) o%( s √ ±) o ; -)
K<B 8G!Rp%\) o% # WCm " IHL 3G$ o% # áÑ y$ ~!LÅ y! # î$ñ%∂($ñ( o% 9 -) ñ à 2±) o 5 -) %.-&
p%s)-& : p-%s&) p%s) -& : p-%s&) s à ±)
rc`m` WC$ ' RpY%s)a& : a{%C($s(n%#Rpo$s(n%_n( \i_
ooj%s& : äÇ%') -&) p-%s& : * eQ Ç %s ) n &wn:-) P-%s) o% : J C ; ) n&RpÇ%\) n ) o%_n*
Otno`h %.-& dn \i dio`bmj*_daa`m`iod\g hds`_ kmj]g`h rdoc m\_d\odji ]jpi_\mt ^ji_dodji %.-&/+
Ei jm_`m oj bdq` \ q\md\odji\g ajmhpg\odji ja kmj]g`h %.-& r` diomj_p^` oc` nk\^`
#%±) N (& : B $ a N ( + Z a Z F i Z a N ( B $ o Z &
∆’⁄Ê‹Êÿ‹Ê Ÿ›⁄◊“—‹‹Â( -554( Ë)g ..6
rcd^c dn \ Ddg]`mo nk\^` rdoc oc` dii`m kmj_p^o
S:d(0:;X9 J A vR8kd$s(o%R8k.$s(o% ' 8kd$s(o%ok.$s(o%w_s_o'
E# }
' - - & $ & (& %8 & $ & (Ë & * %..&
E # \i
Pcdn ji` dn `lpdq\g`io oj oc` pnp\g dii`m kmj_p^o
J e fIa5V "$V!Id5Ë "$V! # 8kd$s(o%dk.$s(o% ' 8kd$s(o%$k.vs(o%w_s_o(
E# }
ndi^` oc` ajggjrdib `nodh\o` cjg_n ajm api^odjin , í † ∞ $®% rdoc ± ]jpi_`_) m`bpg\m jk`i
np]n`o ja N 0 W3Y7
WW'WWi 3 h'VWWI'WSj # ñé¢ââ'WWWY $ )*!
rc`m` ¢ ∞ \i_ ¢ ∞ \m` ^jino\ion _`k`i_dib ji ±+
9RSVYV_VZY )& = api^odji ◊ à ú$®( N (& dn \ r`\f njgpodji ja oc` didod\g ]jpi_\mt)q\gp`
kmj]g`h $-,% rdoc _\o\ a ( R ì »- à P/%N()H/ %±&&) p, à ! Ø%±& \i_ q, à Æ/%±&) d ap $s ( -& :
: pj%u& \ghjno `q`mtrc`m` di ± \i_
J J Q = 3 G C ! ; J J " 1J ! #( #' +" I ! A I D ;/?1 @-$*! ,
E# } -
qÄ Ç$ ´%ò$∑( d & w_ s _o # J J î$ñ%Ø$ñ( ´%ò$ñ( o%_j_o à
E # \i
4 J ∂¥$∑%òv∑( (!Qe # J ( WÁv·(Ê%‡ $·(Ê% ) P\$s(o%R$e%$s(o%Y_s _o )+!
i E # i
ajm \gg ò í °%±) N (&+
Ei oc` i`so n`^odji r` kmjq` oc` ajggjrdib oc`jm`h7
GURZ]RX )& Bjm \it gdi`\m qdn^j`g\nod^ njgd_ j]`tdib oj $-%( rdoc m`g\s\odji api^odji C
n\odnatdib oc` ^jindopodq` \nnphkodjin $0% % $5%( oc` `qjgpodq` kmj]g`h $-,%( rdoc n\odnadib $/%(
a à H. %N( )H/ %±&&) P- à DM %N()NM %±&&) \i_ didod\g _\o\ `lp\g oj u`mj( c\n ji` \i_ jigt
ji` r`\f njgpodji Ω 3´$®(°°'%*
+& G]NY^SZ]X []ZOWRX& H`o 3´µ$®( E! ]` oc` nk\^` ja oc` Bjpmd`m om\inajmhn ja api^odjin
ja ú$®(õ°'%* Bjm ^\pn\g odh` api^odjin r` c\q`
8kΩ H.$N( † -$®(%%( ûωò ) ∏P à P/%N) Æ/%±&&) rdoc 9,<Á%Ó& : gdh(9Z%s)d&+
Lg\i^c`m`Ln oc`jm`h ajm oc` Bjpmd`m om\inajmh \kkgd`_ oj %..& _`adi`n i\opm\ggt oc` ajggjrdib
dii`m kmj_p^o ji ú;$®( N&7
./- ∆’⁄Ê‹Êÿ‹Ê Ÿ›⁄◊“—‹‹Â( -554( Ë)g
Wì° (ßùYë 9 Z
avR8Ld$&(]:%R8kP $s(p+% ' W´ωò∞$∑(ω% *Î;Ô-%'&YÏ
E }
æW≥ø9É/%∂)ø& * %Z/-%\7&Y'xods _ o' Z a
ì:X$ñ(ω%ò°$ñ(ω%©ñ _p(
E 0}
rc`m` ‡& _`ijo`n ^jhkg`s ^jiepb\o` ja ò( \i_ \ i\opm\g dnjhjmkcdnh dn _`adi`_ ]`or``i
D %@)N(& \i_ P)Hem %@)N& W4Y+ H`o \ ]` oc` ajggjrdib n`nlpdgdi`\m ajmh ji ú*; %-)N&7
OSWNWTĘ Ą P A x-ã́ ω¨$∑ #ω% ) ) ì ( ,%Y&_s_p'
E }
'Æ ) F C WCj%s& ( ª#$∑(ω %Y≤¨$∑(ω %#≤ò&$∑(ω %©∑ _p'
E }
J J î¨$ñ( ω%ò&$ñ( ω%©ñ©ω ) J }$s(,%8k$s(,%_s* %.1&
E 0} }
Lg\i^c`m`gën oc`jm`h \kkgd`_ oj %.0& bdq`n7
⁄%ä)9È& : Z 7 ’$ F W a$ s (] :%ò&$∑(ω %)¶,v∑(ω%≤ò&$∑(ω%Y©∑$-ω( %.2&
E }
\i_ <ÉB %M)N& dn oc` i\opm\g nk\^` di rcd^c ji` hpno adi_ oc` Bjpmd`m om\inajmh ja oc` r`\f
njgpodji ajm oc` kmj]g`h %.-&+ Pc`m`ajm` r` \m` \]g` oj kmjq` oc` ajggjrdib g`hh\7
H`hh\ .+ = api^odji ~ √ ú*µ$®( N& dn oc` Bjpmd`m om\inajmh ja \ r`\f njgpodji ja oc`
didod\g ]jpi_\mt)q\gp` kmj]g`h $-,% di oc` n`in` ja @`adidodji - da \i_ jigt da `lp\gdot $-1%
cjg_n ajm \gg ‡ √ #FB%å)N& +
@p` oj oc` kmjk`mod`n ja ^\pn\g odh` api^odjin) oc` ajggjrdib `lp\gdod`n cjg_7
‡$·( -& : çJ $∫ωò$∑(ω% àdk$s( -&Y_p;)
E
ò$∑( -& : çJ ò$∑( ω% ©ω(
E
\i_ oc` n`nlpdgdi`\m ajmh \ ]`^jh`n
\$~( ò% : Đ J J WωZ¨$∑( ω% ( }$s ) -& ( dph$s( -&Y9É'%æ) p%_s _p:'
E }
( Z , , WCj$∑% ' , ($∑(ω%Yä≤¨$∑(ω %≤ò&$∑(ω %©∑©ω'
E }
FB J J î¨$ñ(ω%ò&$ñ(ω%©ñ _p* %.3&
E ')
∆’⁄Ê‹Êÿ‹Ê Ÿ›⁄◊“—‹‹Â( -554( Ë)- ./.
Op]nodopdib %.3& di %.2& \i_ o\fdib òv∑(ω% : ò ∞$∑%ò.$ω%( rdoc ∏X √ Ÿ . %±& \i_ ò. √
√ H.$N&) ]t oc` \m]dom\mdi`nn ^cjd^` ja 8k. do ajggjrn oc\o) ajm \ghjno \gg ω √ N) oc` ajggjrdib
d_`iodot cjg_n7
Wω.¨$∑(ω% ( ¬-%æ& ( ∞ωØ,v∑%YòXv∑%©∑'
±
( F WC,$s% ' C#$s(p%YR~$s(p7%R8k|$s%_s'
±
( J î¨$ñ(ω%ò&-$ñ%©ñ 9 J W,%s)r&t;8%s& * a ,vs(p%R$kg$s%X_s( %.4&
6± ±
ajm `q`mt ∏X z Ÿ .%±&+ >po d_`iodot %.4& h`\in oc\o ¨$ã(ω% dn \ b`i`m\gdu`_ njgpodji di † -$®%
ajm oc` `ggdkod^ kmj]g`h
)ω .¨$∑( ω% çR A Eg-CxD ( C$%s) p8&Y RÄ%s) ω& x :
9 dd,$s% ' Ê‚◊,v·% ' avs(p:%' O3P,vs(p:%( < √ ±) %.5&
Z%<º%ù& ( 92$%ù) ø&w ª¥%ù)ø&Û%ù& ( î$ñ%¨$ñ(ω% : )¶¥$ñ(ω %Ø$ñ%( ñ √ -±+
Qi_`m oc` ctkjoc`n`n ja Pc`jm`h . ji didod\g _\o\) kmj]g`h %.5& ]`^jh`n
)ω .¨v∑(ω% ) B A WCK%V& ( C$%T)Q8&Y Rñ%T)Q8&x : ,%æ )ø & ( R a-%s)p;&) s √ ±)
wµº%ù& ( 92$%ù)ø&w ≤¨$ñ (ω %Ø$ñ% ( î$ñ%¨$ñ(ω% : -) ñ √ -±+ %.6&
N `h \mf -* Pc` ctkjoc`n`n ja ]jpi_`i`nn \i_ kjndodq` _`adi`o`nn ajm CI \i_ C#n %ì)ø&
bdq`
%6 b!ggIk `2!gg* 3 " J <' c$`2!Ik c$`5!Ik" c$`2!Qc 3 -@ @ ggI t H2!gg*$ M 5 ($
±
aajjFwRñ%-&ww/ 9 w C jjRñ %s )- &R m%s )- &_ s9 2jKIwwRÄ%-&ww/) ø : -)
±
nj oc\o kmj]g`h %.6& dn Bm`_cjgh njgq\]g` di † ∞ $®% ajm `q`mt njpm^` di Æ/%±& %n`` Pc`jm`h
1+. W.3) k+ .53Y& \i_) \n \ ^jin`lp`i^` ja Bm`_cjghën Pc`jm`hn) oc` `sdno`i^` oc`jm`h ajggjrn
amjh oc` pidlp`i`nn oc`jm`h+
GURZ]RX / %pidlp`i`nn&+ Bjm `q`mt ω √ N kmj]g`h $-5% c\n \ghjno ji` njgpodji ¥%ì)ø& √
√ Z %± & +
Lmjja* ‘Á kmjq` oc` pidlp`i`nn dn `lpdq\g`io oj kmjq` oc\o ajm `q`mt ω √ N oc` kmj]g`h
)p:.~$s(p:% ) R e ZCj%â& ( C$%s)p8&e Rñ%T)?F& w : -) s √ ±)
.// ∆’⁄Ê‹Êÿ‹Ê Ÿ›⁄◊“—‹‹Â( -554( Ë)-
g<B 8G! ( C#$\( GJTE ÉÄ y $ ω%Ø$ñ% ( x y!Ä y$ ω% : {$ ñ à 2±)
c\n jigt oc` omdqd\g njgpodji+ Ei ocdn ^\n` %.4& ]`^jh`n
J vp.çvs(p:%∏&$∑% ) WC,vs% ' C#vs(p%YRç$s(p%R8k&vs(p%w_s'
±
( J î$ñ%¨$ñ(ω%ò&$ñ%©ñ 9 -+ %/-&
6±
Ea ω à-) oc`i %/-& ajm 8k: r%ì) -& bdq`n
J Cjj$s%O3~$s(,%R~&vs(,%_s' J õ%ù& w¥%ù) -& w/_\ : -+
± 6±
Pc` nthh`omt \i_ kjndodq` _`adi`o`nn ja Cjj) rdoc oc` kjndodqdot ja \) td`g_
wwnth R Ä%ì) -&ww : -) wwÄ%*)-&ww\r : Á+
Pc`i Ä%*)-& √ Ÿj%±& \i_ Gjmiën di`lp\gdot W5Y td`g_n wwÄ%*)-&ww : -+
Ea ω ‡ -) ajm ò : ¥ % ì) -&) oc` dhh\bdi\mt k\mo ja %/-& bdq`n
J C#n$s(p:%á~$s(p%R~&$s(He%_s (
±
Pc`i \nnphkodji %3& `inpm`n wwnth RÄ%ì )ø&ww : -+ D`i^`) ajm , : - \i_ Pj : -) %/-& bdq`n
J ω.¨$∑(ω%ò&$∑%©∑ 4 ( Rdk à 8mlM!$
±
\i_ ocdn dn `lpdq\g`io oj ww¥%ì )ø&ww : -+
N`h \mf .* Pc`jm`h . \i_ N`h\mf . \nnpm` oc\o oc` _daa`m`iod\g jk`m\ojm P$p:% _`adi`_
]t ntno`h %.6& dn \i dnjhjmkcdnh ja ! Ø%±& jioj Æ/%±&+ Odi^` ¶$ω% dn \ ^jiodipjpn api^odji
ja ω( oc`i oc` diq`mn` jk`m\ojm P * .%r& dn \ ^jiodipjpn api^odji ja ω %n`` H`hh\ 11+. ja W4Y&+
Pc` km`qdjpn m`h\mf g`\_n oj
GURZ]RX +& Bjm `q`mt ω à E kmj]g`h $-5% c\n ji` \i_ jigt ji` njgpodji k s (p:% à M } !&
>`nd_`n( oc` ajggjrdib di`lp\gdot cjg_n
FFC&6 55 # __db _̀_ # jgeefe /o m =FF'655 # 5E BJ6 5F>& *)!
rdoc ø à Gll E!&
Lmjja* Ea ~ dn \ njgpodji ja kmj]g`h %.6&) oc`i oc` ajggjrdib `lp\gdot cjg_n7
J e çwø¬%∂)ø&w/ ( WCK%V& ( 9"$%æ)ø&Y R çvT ( HF%O3ç&$T ( Q7%w _s'
( J õ%ù& X¨$ñ(ω%X.©ñ 9 J v,%æ)ø &¡'%æ)ø& * ƺ%æ)ø&ª¥'%æ)ø&x _s* %//&
6± ‚
∆’⁄Ê‹Êÿ‹Ê Ÿ›⁄◊“—‹‹Â( -554( Ë)g ./0
Pc` kmjja dn _dqd_`_ di ocm`` k\mon7 \n admno rl ^jind_`m ω ^gjn` oj -+
Odi^` Cj%s& ( C#$s( ì& dn \ ^jiodipjpn api^odji ja ω \i_
gdh %Cj%s& ( C #vs(p%w : gdh vC-%u& ( C#̂ $s (p %w 9 C Z s % (
ω)gã- ω)∫§
oc`m` `sdnon p:d np^c oc\o da wøw 9 pl
ha wwC Ç %' &( - $% d )ä & w w ; dia wwCî%'& ( - $`%' )ä &ww ; f j î ; -+ %/0&
∑≥(® ∑≥(® ±
Ijm`jq`m) da r` m`^\gg %./&) do dn kjnnd]dg` oj adi_ ω. np^c oc\o da wøw 9 ω. 8 pl) oc`i
ƒÕ Õ ◊ / 9 ω° W=$TEERñD D /( ¢.◊ÂÕƒƒƒËY 9 ZjjhwwRÄ%j8&ww/ ( X \hXX~$p%XXgM* %/1&
Pc`i) da wøw 9 S/) oc` m`\g k\mo ja %//&) %/0& \i_ %/1& td`g_
Z -KhwwRñ%\8&ww/ ( Z hwwÅ%\8&wwgd } 9 FWC ,$s% ' C#̂ $s(r%YRç$s(p%Rç&$s(p(%_s'
±
# F î$ñ% X¨$ñ(ω%X.©ñ % 2̀*ggkgg* 3 gg'@ gg XX¨$ω%XX # ggv( Ü!gg ggÉp Ü!gg 3
6±
9 W≥≥+ßß,© ßß ( »ÁŒœ Y EER{IEE ( G F EE,ID wwä Õ w wä .) %/2&
\i_) rdoc nom\dbcoajmr\m_ ^\g^pg\odjin) %/2& g`\_n oj
gwRä%r&ww ( wwÄ%r&ww\i 9 ∫Www,%ä & ww ( wwa -wwY R I 9 ä\) %/3&
rc`m` ∫ _`k`i_n ji 2jjh& "h( ƒ Ô \i_ E8.*
Ei`lp\gdot %/.&) ajm wøw 9 ω.( ajggjrn amjh %/3& \i_ amjh oc` ^g\nnd^\g di`lp\gdot W.3Y
ßw¬ww.± 9 w wª ¥ ww/ ( , ≥ 0ww¬ww/) %/4&
rdoc oc` ^jino\io =$0 _`k`i_dib ji ±) rcd^c cjg_n ajm api^odjin ja ~ √ † ∞ $®%( rdoc ± ]jpi_`_
\i_ m`bpg\m _jh\di+
Jjr r` ^jind_`m ω ^gjn` oj jj+ Pc` dhh\bdi\mt \i_ m`\g k\mon ja %//& bdq`
5h@ ggI p@ gg* 3 gg' `$!gg ggk `$!gg # ggS(@ gg ggIt p!gg$
%/5&
e f g f * / ' + Q Q; T M ! Q Q* # X ` QQd ^ .!QQ*a # l ' g e e l n h e e # F F B G 6 5 5 5 5 ; S 6 5 5 $
rdoc
—€ : `nnnpk\%\&) \i_ ≠ 9 npk w%4-%∂& ( C#^%æ)ø&w 9 jj)
ùí6± © ≥± æ £
rc`m` wìw _`ijo`n \ ijmh di oc` adido` _dh`indji\g nk\^` HdivOth) Othx+ Ei`lp\gdod`n %/4&)
%/5& bdq`
./1 ∆’⁄Ê‹Êÿ‹Ê Ÿ›⁄◊“—‹‹Â( -554( Ë)g
(õî¢ ì0ww¥%ø&ww/
\i_) ajm ω. ; .—€ƒ÷( %/6&/ td`g_n
w w Õ Œ ww/ 9 wwøî © ww ( wwÆ-%ø&ww wwR äI wwY %Ö&
\i_) rdoc nom\dbcoajmr\m_ ^\g^pg\odjin) di`lp\gdod`n %/6& \i_ %0-& g`\_ oj
gwqäDD ( ƒÕ Œ ƒƒ 9 //´© ( /Z ¶ I ( . W , I ( gg ajIE.ì %0.&
Pc` kjndodq` _`adi`o`nn ja C#, \nnpm`n oc\o ajm wøw ; ·;‡ ; X+.—€ƒ ÷
M/MI ' .≠ ' .bh$p:% ' . Z Z.—€ ( .≠ ( Ã
◊‘) %ø& ‘#›
\i_) ajm wøw ; ω/( %/.& ajggjrn amjh %0.&) %0/& \i_ %/4&+
=o g\no) oc` ^jiodipdot ja oc` diq`mn` jk`m\ojm Æ * .%ø&) \nnpm`n oc\o di`lp\gdot %/.& cjg_n
di oc` ^jhk\^o n`o7 ω/ 9 wøw 9
L mjj a WPc`jm`h .Y+ Pc`jm`h 0 \i_ oc` ctkjoc`n`n ji oc` _\o\ bdq`
, — ƒÃœ ƒ≈/ ( ◊ ÔÊ Ê Ô Ò / ( EEODEEE\&äZ 9 , ®/© Wßß,© ßw ( wI ] D wwY /9dp) 9 --)
N E
oc`i Ä √ N&) \i_ oc` dnjhjmkcdnh ]`or``i #%±8 N (& \i_ °[Z%±8 N(& bp\m\io``n oc\o
~ dn oc` Bjpmd`m om\inajmh ja oc` njgpodji ◊ Ω ú %±8 N(& ja kmj]g`h %.-&+
,& GUR]XZQdYNXVP ]R^_]VP_VZY^ NYQ QZXNVY ZS QR[RYQRYPR VYR\`NWV_d& Ei ocdn
n`^odji r` m`^\gg njh` m`^`io m`npgon W1Y ji oc`mhj_ti\hd^ kjo`iod\gn rcd^c \ggjr pn oj _`adi`
oc` h\sdh\g am`` `i`mbt kjo`iod\g \n ^jin`lp`i^`n ja oc` m`lpdm`h`ion ji oc` ^jinodopodq`
`lp\odji %.&+ Op]n`lp`iogt r` kmjq` oc\o oc` `i`mbt kmjk\b\o`n ocmjpbc oc` nk\^` rdoc adido`
nk``_) ncjrdib \ kmdjmd _jh\di ja _`k`i_`i^` di`lp\gdot ajm oc` `qjgpodji kmj]g`h %/&) rdoc
didod\g k\no cdnojmt pÄ rcd^c c\n adido` h\sdh\g am`` `i`mbt+
Bdmno r` m`^\gg apmoc`m kmjk`mod`n ja oc` m`g\s\odji api^odji7 m`bpdm`h`ion %1&) %5& \i_ %3&
\nnpm` oc\o ◊FC#O %s ) ì& í HÇÇ%N& \i_ C#n$s( ì& ]`gjib oj ,Z %N & ¨ V)/%N& ajm `q`mt . 3 ± %n``
W6Y) oc`jm`h 3+2_&) \i_ Bjpmd`m diq`mndji ajmhpg\ bdq`n
90ºº%∂& * CM$T% : Z J Ä #/Z ω%©ω %00&
E#
oc`i oc` ]jpi_`_i`nn ja oc` g`ao*c\i_ nd_` ja %00& \i_ %3& td`g_
Ω É d%N & ª ∂ í ± +
Ei oc` no\i_\mo ^jinodopodq` `lp\odji ja gdi`\m qdn^j`g\nod^dot oc` nom`nn o`injm dn \ api^odji\g
ja oc` nom\di cdnojmt A ': nth Rp' \i_ oc` nthh`omt ja oc` m`g\s\odji api^odji \ggjrn ji` oj
gfãI EE/ 9 W ee gE ,I E E ƒŒ Ì Ôƒ ƒ ( ƒ w» ÁÕ wwwwR { D Q Y( %ËĔ&
∆’⁄Ê‹Êÿ‹Ê Ÿ›⁄◊“—‹‹Â( -554( Ë)g ./2
m`kg\^` A rdoc Rp di %.&/+ Ei ocdn n`^odji r` _`adi` oc`mhj_ti\hd^ kjo`iod\gn \n api^odji\gn
ja A*
Eo dn i\opm\g oj ^\gg \i \_hdnnd]g` cdnojmt ja oc` _`ajmh\odji bm\_d`io) \it cdnojmt ajm rcd^c
oc` nom`nn o`injm P dn ]jpi_`_+ Pc` ^jinodopodq` `lp\odji %.& \ggjrn pn oj bdq` oc` ajggjrdib+
9RSVYV_VZY *& = h`\npm\]g` api^odji ¬&$·(ã%6 E# àá Oth dn \i \_hdnnd]g` cdnojmt da
J C#vs) n %A Xs ( n&_nw 9 --+ %01&
N(
S` j]n`mq` oc\o \it \_hdnnd]g` cdnojmt h\t ]` ^jind_|m`m \n \ gdi`\m ^jiodipjpn api^odji
ji oc` nk\^`
P 9 vR 7 N ( Hdi%Oth)Oth&8 R : \C# ( S( — à N) S à ?$ÉÇ%N(&x)
rc`m` S c\n q\gp`n di Hdi %Oth) Oth&+ S` ^\i o\f` oc` n`o ja \_hdnnd]g` cdnojmd`n \n g\mb`
\n kjnnd]g` ]t g`oodib ocdn n`o `lp\g oj ¶ # %nk\^` ja \gg ^jiodipjpn api^odji\gn ji P %* =ao`m
\ nom\dbcoajmr\m_ ^\g^pg\odji ¶ # opmin jpo oj ]` oc` n`o ja cdnojmd`n A - à R %_p\g nk\^` ja
? aa %N(&& np^c oc\o %01& cjg_n+
Eo dn kjnnd]g` oj bdq` \ _`adidodji ja oc` Bjpmd`m om\inajmh ja \m]dom\mt _dnomd]podjin di R
rdoc oc` pn` ja oc` L\mn`q\gën d_`iodot) epno \n do r\n ajm oc` o`hk`m`_ _dnomd]podjin W.-Y+
H`o V ]` nk\^` ja o`nodib api^odji ja m\kd_ _`^m`\ndib rcjn` Bjpmd`m om\inajmh \m` di
?MÄ %N(&) \i_ \ _dnomd]podji , ]`gjibn oj R ( oc`i r` ^\gg oc` Bjpmd`m om\inajmh ja oc`
_dnomd]podji , √ V # %_p\g ja V% nj oc\o 8 a ( ‡ ;:9 , ) ‡: ajm `q`mt ‡ í V ( rc`m` 9 ì ) ì ;
_`ijo`n oc` _p\gdot ]m\^f`o+
Pcdn _`adidodji `so`i_n h`m`gt oc` _`adidodji ja jm_di\mt Bjpmd`m om\inajmh) di oc` n`in`
oc\o oc` Bjpmd`m om\inajmh ja api^odjin ]`gjibdib oj H.jm H/ dn \ nk`^d\g ^\n` ja oc` b`i`m\gdu`_
Bjpmd`m om\inajmh+
H`o mP # _`ijo` oc` \_hdnnd]g` n`o ja \gg k\no*cdnojmd`n ”¬ ‰$·(ã% rcd^c \m` j]o\di`_ amjh
cdnojmd`n A #$s ( ì& √ ¶ # ]t m`nomd^odji oj N ((+ =n \ ^jin`lp`i^` r` c\q`7 ¶ # :Oths mP # \i_
¬&$Õ (*% 9 $¬$Õ≈ ¡¬&$Õ (ã%%*
9RSVYV_VZY +& = am`` `i`mbt( m`g\odq` oj oc` ^jinodopodq` `lp\odji $-% dn \ api^odji\g | 1
C ? OthTmF*$ à:N ( `i_jr`_ rdoc oc` ajggjrdib kmjk`mod`n6
%d& oc` n`o C ” ¶ # ja \_hdnnd]g` cdnojmd`n dn np^c oc\o da AM √ C( oc`i `\^c cdnojmt A o'O(
n ; -) ajm rcd^c A o'O $n ( m& : AM$P%( dn \i `g`h`io ja CX
%dd& ∞ dn ^jiodipjpn \i_ _daa`m`iod\]g` rdoc m`nk`^o oj oc` admno \mbph`io \i_
P $s (o% 9 _Avs:o%0 #$A $s (o%mA o$s (*%%Y
%ddd& ajm `\^c A& Å C \i_ n ; -) np^c oc\o )Œ)A$o ' n% dn ^jiodipjpn( ÷$A o'O %\7)ì&& dn
_daa`m`iod\]g` rdoc m`nk`^o oj n \i_ n\odnad`n oc` di`lp\gdot
Ç ) & $A o'n$s( ì&& 9 P $A o'Ä$s( ) % % Z A $ o ( n&8
%dq& ∞ dn hdidh\g ji ^jino\io cdnojmd`n d*`* ÷%…Z& 9 ÷$A&%( rc`m` AZ dn oc` cdnojmt
¬ ”v·(÷% : Avs(o%( \i_ ÷$A&$s( ì&& : Z ä + % u & A$s( o%ã A $s( o%( da \i_ jigt da A g : ¬À
./3 ∆’⁄Ê‹Êÿ‹Ê Ÿ›⁄◊“—‹‹Â( -554( Ë)g
H`o Cj : vA& 7 N( *ãü Æ/%±&8 wwÉ'%ì&ww √ H/%N(&x+ Odi^` C#vs( ì& \i_ C#\vs(ã% ]`gjib oj
H.%N(& — H/ %N(&) ajm `q`mt A ' Å Cj) ]t pn` ja oc` Lg\i^c`m`gën oc`jm`h) oc` ^jinodopodq`
`lp\odji ajm oc` nom`nn o`injm h\t ]` rmdoo`i \n
P$s( o% : Cjj$s%A$s( - ( y %02&
E#
\i_ oc` oc`mhj_ti\hd^ m`lpdm`h`ion ja oc` ^jinodopodq` `lp\odji \ggjr ji` oj bdq` oc` ajg*
gjrdib %n`` W1Y&+
GURZ]RX ,& E a oc` m`g\s\odji api^odji C n\odnad`n oc` ^jinodopodq` \nnphkodjin( oc`i ajm
`q`mt cdnojmt A& Å Cj( oc` api^odji\g
# Ú ) $ & & : Z < î % æ &§ %æ )ß &§ % æ ) ≥& *
E#
dn \ am`` `i`mbt _`indot*
C]Z[Z^V_VZY )& w£ _`adi`n \ ijmh( i\h`gt
Xü X∑ (ã% X.£ 9 .∏£$ü X∑ (ã % % %03&
\i_ oc` nk\^` √€( j]o\di`_ \n ^jhkg`odji ja Cj m`g\odq` oj ocdn ijmh( dn \ >\i\^c nk\^ *̀
Ijm`jq`m oc` nom`nn o`injm P dn r`gg)_`adi`_ \i_ dn ^jiodipjpn ji √€( Ei oc` n`in` oc\o
XP$s( o% E/ 9 W wCj%s& * CjjKKg ( wCjj%'&wY EA Xs ( KEH+ %04&
Lmjja* =n diomj_p^odji) r` m`h`h]`m oc\o ajm \it nthh`omd^ \i_ kjndodq` _`adido` o`injm
=( r` ^\i _`adi` oc` nthh`omd^ \i_ kjndodq` _`adido` o`injm t+xy( nj oc\o t+y t+y : = \i_
wRzw : ®
Odi^` Cjj \i_ pC#n \m` kjndodq` _`adido`) `skm`nndji %02& ja oc` nom`nn o`injm td`g_n
XP $s (o%X. 8 $g ' \%XCjj$s%XA$s(o%Cjj$s%A$s(o%) % g ( d & É w F [ b Z Z ws
E#
s d F p C d % d ) r & W É d % d ) r & * Z Y Züûv∑(ω% ) _p*
E#
?cjjndib \ : çC,è %T&.) %00& \i_ %03& bdq` %04&+
ECZjjdZ&!
N`h \mf /* Bjm `q`mt cdnojmt A g Å √ € ) \ nom\dbcoajmr\m_ ^\g^pg\odji td`g_n %n`` W1Y&
œ!€ v¬&$·()%% 9 … v· (Ê%¬ $· (Ê% * %05&
S` ^\gg ojo\g h\sdh\g h`^c\id^\g `i`mbt \o odh` o( m`g\o`_ oj oc` h\sdh\g am`` `i`mbt ÷Â)
oc` api^odji
/((= & ' W w™ ' ) ≥ & w /( ö © % ª ä ' % ' )- & Y¬ ( Z ,H(I *L(I!K*$JI#
± ‘ÊÁ
∆’⁄Ê‹Êÿ‹Ê Ÿ›⁄◊“—‹‹Â( -554( Ë)- ./4
L mjkjndodji .* Bjm \it cdnojmt ◊-( np^c oc\o A 1√ ∆ € ( \ kjndodq` ^jino\io Ÿ `sdnon( np^c
oc\o(
7 8 55*# QQLX C!QQ* # 4 " ! QQ* / 4/(C= # +,!
Lmjja* Pc` kmjk`mod`n ja _`adi`o`nn ja C9s; \i_ C#n \nnpm` oc\o ÷›, n\odnad`n
J Z IvAo$s()%%_s : ZadajjFEnth Rp%d&ww/
±
nj oc\o
wwä%-ƒw/ ( 2ÁÁÍ ww5Î Í’ · %- w w/( ⁄ Í ww· %- wwwË 9 .`I$o%* %1-&
Bdi\ggt) oc` Gjmiën di`lp\gdot \kkgd`_ oj %1-& td`g_n %06&+
Ei jm_`m oj _`adi` oc` ^g\nn ja njgpodjin ja oc` `qjgpodq` kmj]g`h di gdi`\m qdn^j`g\nod^dot
rcd^c n\od^ad`n oc` _jh\di ja _`k`i_`i^` di`lp\gdot) r` bdq` oc` ajggjrdib _`adidodji7
@`adidodji 1+ = api^odji ◊ í 3´$® (,(ó% dn \ r`\f njgpodji ja oc` didod\g ]jpi_\mt)q\gp`
kmj]g`h $.% di oc` nk\^` odh` _jh\di ± T %-)m& rdoc didod\g cdnojmt pÄ nj oc\o nth RpÇ √ ÷Á
\i_ a í H/%ad)-)m& da pvs(-& : ä-%/)-& \ghjno `q`mtrc`m` di ± \i_
D J
wC -%V&RQ%T) ï& ( J g H F C E A GBI C E n&_nYq9É%s)d&*
- ± Z -
àddvs( æ%‡$·( Ê% X_s_o ( J J î$ñ%Ø$ñ ) Ê%‡$—( o%_\_o 9
$ - 6±
ĘJ O,IQJPIQH,JdEFJ J AKEHDGKEHDJdEdD
± - ±
ajm `q`mtPIQHRJ√ 44%±)-)û&) rc`m` Rj : )ôZ)pÄ$s(n%Xn9j*
Lmjkjndodji 0+ H`o ◊ √ #%±)-) m& ]̀ \ r`\f njgpodji ja $.%( oc`i
P
nthRä%n) o àn% da o : n7
nthRpÇ%n) o ) n% da o 8 n
]`gjibn oj ÷Á \i_
`nnnpk : P%m& * R wCÇ y Cè .( wCy w* %1.&%ι)≥&ú±æ%º)û& wé %')d&w ( X$¬”$·( ã%X£
Lmjja* = ^g\nnd^\g \gb`]md^ di`lp\gdot \i_ %04& c`\_n oj
/wP%s) . I I E 9 ›Ww”Á%Ï& * C î%s &w ( ECjjSK w%A $%s ) *&EI ( Ú %' + - L+ %1/&
./5 ∆’⁄Ê‹Êÿ‹Ê Ÿ›⁄◊“—‹‹Â( -554( Ë)g
rdoc É ; -+ Ea r` ^cjjn` É/ : w94º%∂& * Cjj%\7&w ( wCjj%'&we %1/& bdq`n %1.&+
Pc`jm`h 2+ %@jh\di ja _`k`i_`i^` di`lp\gdot&+ =it r`\f njgpodji ja $.% n\odnad`n
IMKGLiNOHM2D XvAm$s( CDOQEFJI D
îvñ%XØ$ñ (ó%X.©ñ S
ZÃAXSÀBÄT ĎĈ2Ċ Ê Ć SÇČT
EN
WX}$s(,%X.' X$AÄ$s()%X.IY_s '
î$ñ%XØ$ñ(,%X.©ñ'
ZĀAXĖ BX SÀĂÄT CZÃA XĖLÁXSÈÄT
(/
a $s (o%} $s (o%_ s _o( %10&
iiOm(4%m[o&%uj&
rc`m` Om$sj& 9 vs X Xs àTMX 9 mx \i_ 4 dn _`adi`_ di $0-%ã
L mjj a H`o ◊ 7 W-) ‹Y ç;† -$®% ]` \ r`\f njgpodji ja %/&) \i_ ò \ n^\g\m api^odji np^c oc\o
ìí ?MÇ%N0 < N&+ S` diomj_p^`
’Ãæ”% )
ZxX~vs(o%X.' ߣvü´$∑(ã%Zò $∑(™©∑ ' î$ñ%X¨$ñ(´%X.©ñ*
Z CZ
Pc` admno _`mdq\odq` ja ’‡ \i_ %05& bdq`) \ao`m oc` dio`bm\odji ]t k\mon
Z ’ ‡$o% 9
Wpvs(o% ) R P vA Xs ( ã%Y¨$∑(´%ò $∑(™ _s'
Z
( e Z X } $ s ( o % X .' Z £$ ü X ∑ ( Z ò $ ∑ (™ ) ¶ Xü X∑ (* % ¨ $ ∑ (™ ≤ ò $∑ (™ Z © ∑'
Z
RO
îvñ%Xº$ñ (™ X.ò$ñ(´%©ñ* %11&
CZ
Pc` api^odji ò dn ijr nk`^d\gdn`_ oj c\q` oc` ajmh
‡$·( Ê% 9 ‡4$X· * â-w * ‹ * 4 %‹ * Ê%%
rc`m` 4 dn _`adi`_ ]t %1/&) ‡"√?ÇÇ%N& \i_
P
. da n 9 )ï7
- 9 ‡Ê$÷% 9 .8 %L#n$n% 9 - ) Rn í N)
- da n ; ïã(
nj oc\o
≤∏ v∑ (™ 9 RXs ) s,Xò!( ß v∑(™ 9 ù ì#/*
N`^\ggdib oc\o ◊ dn \ njgpodji ja %/&) rdoc ocdn ^cjd^` ja ò( %11& ]`^jh`n
F 0 $o% 9
a$s ( o%p$s( NDLMG Xs ) s ,X ) m ) 4 %m * o%%_s'
Z
# ' P q ? i g ? # k p ? $ Y ! ! > % ] ? U $ Y ! " " $ C ! ; Q " % " G Q ! R N
Z
∆’⁄Ê‹Êÿ‹Ê Ÿ›⁄◊“—‹‹Â( -554( Ë)g ./6
·‡#2$X· ç-w ç»ç4 $ ) o%%_s'
' X , õ %ù&߬%ùë ´ß/4-2%ßù çâjw ç‹ ç$ àd%%_\ 9
6±
9 F a d s ( o%~$s( Ê%‡2$X· ) s j X ) m ) 3 $P ) o%%_s( %12&
±
\i_ \ odh` dio`bm\odji ja %12& bdq`n
Ω‡$% ) ’‡vÊ% 8 J C a$s (o% dd$s ( v%‡“$X· ) s j X ) ” ) Ø $ ó ) o % %_ s _o* %13&
- ±
Bdi\ggt) ndi^` ‡“ o`i_n ]jpi_`_gt oj oc` ^c\m\^o`mdnod^ api^odji ajm 2‹(4%Í['&%Á& \n ï à:-) oc`
k\nn\b` oj oc` gdhdo di %13& bdq`n %10&+
Pc` am`` `i`mbt ö£ `sdnon ajm \it m`g\s\odji api^odji n\odnatdib oc` hdidh\g n`o ja kmj*
k`mod`n rcd^c c\q` ]``i m`lpdm`_ oj c\q` \bm``h`io rdoc oc`mhj_ti\hd^ kmdi^dkg`n+ Ki
oc` joc`m c\i_) di oc` ^g\nn ja gdi`\m qdn^j`g\nod^ h\o`md\gn oc`m` dn ijo \ pidlp` am`` `i`mbt
api^odji\g) \i_ ajm m`g\s\odji api^odjin C rdoc apmoc`m kmjk`mod`n dn kjnnd]g` oj bdq` \i `skgd^do
m`km`n`io\odji ja joc`m am`` `i`mbt api^odji\gn \n ncjri di oc` ajggjrdib `s\hkg`n+
As\h kg` -* Pc` m`g\s\odji api^odji C dn ^jhk\od]g` rdoc oc`mhj_ti\hd^ kmdi^dkg`n)
hjm`jq`m C# dn i`b\odq` _`adido` \i_ C dn kjndodq` n`hd_`adido`+ Qi_`m oc`n` ctkjoc`ndn oc`
api^odji\g
öù %Z %' )ì & & : XC KKvs %A Xs ( o % ôA Xs ( o % x
J » $· (4 %W¬ ”v· (4% ) ü $∑ (™ Y ãWü &v∑ (4% ) A$s(o%Y_n
E#
di oc` éCm\aN * Rjgo`mm\è am`` `i`mbt _`indot W.5Y+
L mjkjndodji 1+ öù _`adi`n \ ijmh( i\h`gt Xü&$∑( ì&wZ .: /∏îvü&$∑( ô%% \i_ oc` nk\^`
DC( j]o\di`_ \n \ ^jhkg`odji ja Cj m`g\odq` oj ocdn ijmh( dn \ >\i\^c nk\^`* Ijm`jq`m oc`
nom`nn o`injm P dn r`gg)_`adi`_ \i_ dn ^jiodipjpn ji > C ( di oc` n`in` oc\o
XP $s (o%X. 9 WwC-%s& * C^j%s&w ( w”ÁÁ%Ï&ÿZ%Ï) ì&ßùì %14&
Lmjja* Odi^` Cjj \i_ àC# \m` kjndodq` _`adido`) %.& td`g_n
XP $s (o%X. 8 $g ' É%XC,,$s%XA $s(o%C,,$ s %A $ s (o % ) % g ( d & w F *C$%')`&9a^ws
E#
T J C #$s ) n adA Zs ( n% ) A $s( o%YWA Xs( n& * A$s( o%Y_n) %15&
E#
rdoc É ; -+ Ea r` ^cjjn` É : çZÇÇ%À&ƒ) %15& bdq`n %14&+
wCjj%Ö&w
.0- ∆’⁄Ê‹Êÿ‹Ê Ÿ›⁄◊“—‹‹Â( -554( Ë)g
Ei`lp\gdot %14& g`\_n oj oc` _jh\di ja _`k`i_`i^` di`lp\gdot ajm r`\f njgpodjin ja %/& rdoc
didod\g cdnojmt pÄ √ DC)
Ei oc` i`so `s\hkg` \i pid_dh`indji\g m`g\s\odji api^odji dn ^jind_`m`_7
As\hkg` .* Pc` m`g\s\odji api^odji C dn bdq`i ]t \ nph ja `skji`iod\g api^odjin7
f9.
rdoc —Ÿ( Ÿ : . )/ )+++ ) J ( kjndodq` ^jino\ion) C \i_ =f( Ÿ : . ) / ) + + J kjndodq` api^odjin
]`gjibdib oj %4%±¨∏.%±&&+
Rdn^j`g\nod^ h\o`md\gn rdoc m`g\s\odji api^odjin ja ocdn fdi_ c\q` ]``i nop_d`_ di W./Y \i_
W.0Y %rdoc \ _`aa`m`io \kkmj\^c& \i_ oc` ajggjrdib am`` `i`mbt api^odji\g dn _`adi`_
ö`vA Xs ( ì&& : ZC ,,$s%A $s (o%A $s (o%'
' X
C vs(nd ( n/&WÑ d %\7)n.& * ü$∑(™YWü&$∑( n.% ) A$s(o%Y_nd_n.*
E# E#
C]Z[Z^V_VZY -& û£ _`adi`n \ ijmh( i\h`gt XAovs( %!gT 4S .ok`$A o$s( s!! \i_ oc` nk\^` D`(
j]o\di`_ \n \ ^jhkg`odji ja Cj m`g\odq` oj ocdn ijmh( dn \ >\i\^c nk\^ *̀ Ijm`jq`m oc` nom`nn
o`injm P dn r`gg)_`adi`_ \i_ dn ^jiodipjpn ji > `( di oc` n`in` oc\o
XPvs(o%X. 8 C j vs % XA Xs (*% Xg %16&
Lmjja* Pc` ^jinodopodq` `lp\odji %.& ajm oc` nom`nn o`injm ^\i ]` m`rmdoo`i
P $s (o% : Cjj$s(o%A$s(o% ' • \f=fvs%Af$s(o&)
Ÿ: Ô
rc`m` Af$s(o% : a ’x—Ÿ–W¬&$·(4/& çA$s(o%Y_n( \i_ oc` ajggjrdib di`lp\gdot cjg_n
N
XP $s(o%X. 8 åC,,$s% ' U Z = f$s % Y $C ,,$s%A.$s(o% ' U Z \ .f=f$ s %A g $ s ( o % X %2-&
q fĘ Ě F q fĘ Ě #
\i_ %16& dn \ ^jin`lp`i^` ja %2-& \i_ ja oc` ajggjrdib m`g\odjin7
Cj^Km& ( ≠ =f$s% 9 Cj$s%7 • $ÀæøŸ$·%’—ŸZ 'Z 9 C $s( Og ' n.%*
f9 Ě f9Ě
N `h \mf 0* Bjm oc` pid_dh`indji\g hj_`gn ja gdi`\m qdn^j`g\nod^dot
5 3 G ? % 3 G G 2 H ! ! # Q3 (( @-! Q 0 3 G O !
\i_ %04&) %14& ]`^jh`n
w» %Œ &“ 9 C îr wŸ ê%')*&ƒ/Œ8 w» %ƒ ) ƒ & w/ 9 Cî%s& w£'%')ì&ww)+
Pc` nk\^`n ù´î \i_ D` \m` g\mb`m oc\i …Ê€ ]`^\pn` oc`t di^gp_`) ajm `s\hkg`) ]jpi_`_
k`mdj_d^ cdnojmd`n rcd^c \m` ijo di N IE OK oc\o ajm m`g\s\odji api^odjin _`adi`_ di As\hkg`n .
∆’⁄Ê‹Êÿ‹Ê Ÿ›⁄◊“—‹‹Â( -554( Ë)g .0.
\i_ /) oc` _jh\di ja _`k`i_`i^` di`lp\gdot ajm oc` `qjgpodq` kmj]g`h %/& ^\i ]` kmjq`_ ajm \
g\b`m ^g\nn ja didod\g _\o\+ Djr`q`m do dn dhkjmo\io oj j]n`mq` oc\o ajm didod\g cdnojmd`n ]`gjibdib
oj Cj( oc` ]`no `nodh\o` ja oc` nk``_ ja kmjk\b\odji dn bdq`i ]t _`adi`_ di %1.&) ]`^\pn` ÷›Z
dn oc` h\sdh\g am`` `i`mbt+
-& =d[R]OZWVPV_d& Ei`lp\gdot %1.& \nnpm`n oc\o oc` m\odj + )6 dn
wp%s )o&w ( G*Aì %à;#%XI
]jpi_`_ ]t oc` ^jino\io XaXCj àCjjg ( wCjjw rcd^c _`k`i_n i`doc`m ji oc` odh` o ijm ji
oc` njgpodji p* Pcdn kmjk`mot bdq`n oc` _jh\di ja _`k`i_`i^` di`lp\gdot %Pc`jm`h 2& \i_
npaad^d`io ^ji_dodjin ajm ctk`m]jgd^dot ja kmj]g`h %/&+ Ei jm_`m oj kmjq` oc` g\no \nn`modji) r`
m`^\gg oc` _`adidodji ja ctk`m]jgd^dot ajm _daa`m`iod\g jk`m\ojmn ja otk`7
Hp$s(o% 9 - di ±æ%´ )ûº&)
%2.&
p$s( -& : pj$s% di ±+
9RSVYV_VZY -& Pc` jk`m\ojm H dn ctk`m]jgd^ da ajm `q`mt nhjjoc didod\g _\o\ „ n\odnatdib
%$ & ! , - ajm & √ ± X2 ô%'º&) kmj]g`h $1-% c\n \ pidlp` nhjjoc njgpodji p $s(o% c\qdib adido`
ndbi\g nk``_( d*`* oc`m` `sdnon \ kjndodq` n^\g\m ^jino\io ^ np^c oc\o ◊ \o odh` o q\idnc`n jpond_`
oc` n`o Om'̂ o — ± $n`` W-0Y \i_ W-1Y%*
Pc` \]jq` _`adidodji ^\i ]` `so`i_`_ oj \i dio`bmj_daa`m`iod\g ntno`h ]t np]nodopodib oc`
didod\g _\o\ p, rdoc oc` cdnojmt ja ◊ \o odh` o : -) po9,$s(n% 9 pÄ$s(n%*
GURZ]RX .& Qi_`m oc` ctkjoc`n`n ja Pc`jm`h 1 kmj]g`h $.%( rdoc njpm^` a : - di
± T % )́ûº& \i_ didod\g cdnojmt pÄ$s(n% : - di ± X2 ô%¿º&) c\n \ pidlp` njgpodji ◊ rcd^c \o odh`
o q\idnc`n jpond_` oc` n`o ±—Om'?o %Zj&) rdoc ^ 9 XFXCMLCMKw ( wCjjwì
Lmjja* H`o ◊ ]` \ r`\f njgpodji ja %/& \i_ s √ ± X %OZm(^oZj& Z Z &+ Pc` ^ji_dodjin ji
oc` njpm^` \i_ oc` didod\g cdnojmt rdoc %10& g`\_ oj
J UD TQ./01ĖQSBCI�RTYÆIVW�Ė P %2/&
ooinm%~& \iinm%n&
>t qdmop` ja %06&) oc` `lp\gdot %2/& \nnpm`n oc\o p$s(o% : - di ±¨ Om$s%*
Odi^` s dn \i \m]dom\mt kjdio ja oc` n`o ±X %OZm(^d %Zj&¨±&) r` ^\i ^ji^gp_` oc\o p$s( o% : -
jpond_` oc` n`o Om'^o %Öj& ¨±+
N `h \ mf 1* Pc`jm`h 3 `hkc\ndu`n oc` dhkjmo\i^` ja oc` `sdno`i^` ja \i pkk`m ]jpi_
ajm oc` kmjk\b\odji nk``_ ja oc` _dnopm]\i^`n+ Ei a\^o rdocjpo ocdn pkk`m ]jpi_ r` ^\iijo
j]o\di oc` ctk`m]jgd^dot ja oc` dio`bmj _daa`m`iod\g kmj]g`h \n \ ^jin`lp`i^` ja oc` _jh\di ja
_`k`i_`i^` di`lp\gdot+
.+ B\]mdudj I*( H\uu\md >* Ki `sdno`i^` \i_ oc` \nthkojod^ no\]dgdot ja njgpodjin ajm gdi`\m qdn^j`g\nod^ njgd_n
,,= m^c+ N\odji+ I`^c+ \i_ =i\g+ * .66.+ * ..3+ * L+ .06*.2/+
/+ Hp^\ E* @jh\di ja diagp`i^` \i_ pidlp^od`nn di qdn^joc`mhj`g\nod^dot ja dio`bm\g otk` ,,?jiodipph I`^c+
Pc`mhj_ti+ * .656+ * .+ * L /.0*//3+
0+ ?\m]ji\mj ¿* Pc` adido` nk``_ ja kmjk\b\odji ja _dnopm]\i^` di \i pi]jpi_`_ gdi`\mgt qdn^j`g\nod^ h\o`md`gg
,,>jgg+ Qidji` h\o+ do\g+ * .660+ * 4>+ * L+ 542*56.+
1+ B\]mdudj I*( Cdjmbd ?*( Ijmmj =* Bm`` `i`mbd`n \i_ _dnndk\odji kmjk`mod`n ajm ntno`hn rdoc h`hjmt ,,=m^c+
N\odji+ I`^c+ \i_ =i\g+ * .661+ * ./2+ * L+ 01.*040+
.0/ ∆’⁄Ê‹Êÿ‹Ê Ÿ›⁄◊“—‹‹Â( -554( Ë)g
2+ B\]mdudj I*( Ijmmj =* Rdn^j`g\nod^ m`g\s\odji api^odji ^jhk\od]g` rdoc oc`mhj_ti\hd^n , , F + Agadno+ *
.655+ * )0 A * L+ 30*42+
3+ Ocjr\go`m N*A* Ddg]`mo nk\^` h`ocj_n ajm _daa`m`iod\g `lp\odji+ * Hji_ji `o^+7 Ldoh\i) .644+
4+ Pm`q`n B* >\nd^ gdi`\m k\mod\g _daa`m`iod\g `lp\odji+ * J`r Ujmf7 =^\_) km`nn) .642+
5+ @pq\io C*( Hdjin F* Ei`lp\gdod`n di h`^c\id^n \i_ kctnd^n+ * >`mgdi `o^+7 Okmdib`m) .643+
6+ >\bb`oo H*( Bpgfn S* Bjmh`m \i\gtndn+ * ∆ÈÔ =iejp km`nn) >jpg_`m) .646+
.-+ V`h\id\i =*D* @dnomd]podji oc`jmt \i_ om\inajmh \i\gtndn+ * I^Cm\r*Ddgg >jjf ?jhk\it) .632+
..+ Jjgg S* = i`r oc`jmt ajm ndhkg` h\o`md\g ,,= m^c+ N\odji+ I`^c+ adi_ =i\g+ * .644+ * 33+ * L+ 01.*040+
./+ Cm\aad @*( B\]mdudj I* Opgg\ ijudji` _d no\oj k`m h\o`md\g! qdn^j`g\nod^d _d odkj ém\o`è ,,= ood+ =^^\_+ i\u+
Hdi^`d N`i_+ adn+ * .656+ * /+ Ú 5+ * L+ /-.*/-5+
.0+ Cm\aad @*( B\]mdudj I* Jji pid^do\ _`ggë̀ i`mbd\ gd]`m\ k`m h\o`md\gd qdn^j`g\nod^d ,,E] d_ + * L+ /-6*/.1+
.1+ D`mn^c N* Djr oj ^g\nndat _daa`m`iod\g kjgtijhd\gn ,,=h`m+ I\oc+ Iji+ * .640+ * /( A * L+ 31.*321+
.2+ @\qdn L*H* Dtk`m]jgd^ dio`bmj_daa`m`iod\g `lp\odjin ,,L mj^ + =h`m+ I\oc+ Oj^+ * .642+ * 14+ * L+ .22*.3-+
.3+ H\_tuc`inf\t\ K*=* Pc` ]jpi_\mt q\gp` kmj]g`h ja h\oc`h\od^\g kctnd^n+ * J`r Ujmf `o^+7 Okmdib`m)
.652+
.4+ Idfc\dgjq R*L* L\mod\g _daa`m`iod\g `lp\odjin+ * Ijn^jr7 Idm) .645+
.5+ Cm\aad @* Opggë̀ nkm`nndji` _`ggë̀ i`mbd\ gd]`m\ i`d h\o`md\gd qdn^j*`g\nod^d gdi`\md ,,= ii+ h\o+ kpm\ `_ \kkg+ *
.641+ * 0/ A * L+ /40*/46+
N`^`dq`_ .1*,4*53
∆’⁄Ê‹Êÿ‹Ê Ÿ›⁄◊“—‹‹Â( -554( Ë)g .00
|