The domain of dependence inequality and asymptotic stability for a viscoelastic solid
The existence, uniqueness and asymptotic stability is shown for the integrodifferential system of the viscoelasticity. Moteover a domain of dependence theorem is proved by using the properties of the free energy related with such a system. This theorem provides a finite signal speed and then the...
Gespeichert in:
| Datum: | 1998 |
|---|---|
| Hauptverfasser: | Fabrizio, M., Lazzari, B. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
1998
|
| Schriftenreihe: | Нелінійні коливання |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/174920 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | The domain of dependence inequality and asymptotic stability for a viscoelastic solid / M. Fabrizio, B. Lazzari // Нелінійні коливання. — 1998. — Т. 1, № 1. — С. 117-133. — Бібліогр.: 18 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
The domain of dependence inequality and asymptotic stability for a viscoelastic solid
von: Fabrizio, M., et al.
Veröffentlicht: (1998) -
On asymptotic information integral inequalities
von: Veretennikov, A.
Veröffentlicht: (2007) -
Inequalities for the inner radii of nonorevlapping domains
von: A. K. Bakhtin, et al.
Veröffentlicht: (2019) -
Determining the stress concentration change with time in a viscoelastic orthotropic solid
von: M. F. Selivanov, et al.
Veröffentlicht: (2020) -
Asymptotic stability for a thermoelectromagnetic material
von: Amendola, G.
Veröffentlicht: (2001)