Symmetries of center singularities of plane vector fields
Let D² ⊂ R² be a closed unit 2-disk centered at the origin O ∈ R², and F be a smooth vector field such that O is a unique singular point of F and all other orbits of F are simple closed curves wrapping once around O. Thus topologically O is a «center» singularity. Let θ : D² \ {O} → (0, +∞ ) be the...
Gespeichert in:
| Veröffentlicht in: | Нелінійні коливання |
|---|---|
| Datum: | 2010 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2010
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/174925 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Symmetries of center singularities of plane vector fields / S.I. Maksymenko // Нелінійні коливання. — 2010. — Т. 13, № 2. — С. 177-205. — Бібліогр.: 30 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-174925 |
|---|---|
| record_format |
dspace |
| spelling |
Maksymenko, S.I. 2021-01-28T16:27:24Z 2021-01-28T16:27:24Z 2010 Symmetries of center singularities of plane vector fields / S.I. Maksymenko // Нелінійні коливання. — 2010. — Т. 13, № 2. — С. 177-205. — Бібліогр.: 30 назв. — англ. 1562-3076 https://nasplib.isofts.kiev.ua/handle/123456789/174925 515.145+515.146 Let D² ⊂ R² be a closed unit 2-disk centered at the origin O ∈ R², and F be a smooth vector field such that O is a unique singular point of F and all other orbits of F are simple closed curves wrapping once around O. Thus topologically O is a «center» singularity. Let θ : D² \ {O} → (0, +∞ ) be the function associating with each z ≠ O its period with respect to F. In general, such a function can not be even continuously defined at O. Let also D⁺(F) — be the group of diffeomorphisms of D², which preserve orientation and leave invariant each orbit of F. It is proved that θ smoothly extends to all of D² if and only if the 1-jet of F at O is a «rotation», that is, j¹F(O) = −y(∂/∂x) + x(∂/∂y). Then D⁺(F) is homotopy equivalent to a circle. Нехай D² ⊂ R² — замкнений одиничний 2-диск з центром у початку координат O ∈ R² i F — гладке векторне поле, для якого O є єдиною особливою точкою, а всi iншi орбiти поля F є простими замкненими кривими, що охоплюють O. Таким чином, топологiчно O є особливiстю типу «центр». Нехай θ : D² \ {O} → (0, +∞ ) — функцiя, що ставить у вiдповiднiсть кожнiй точцi z ≠ O її перiод вiдносно F. Взагалi кажучи, ця функцiя не може бути продовжена навiть до неперервної функцiї на всьому D². Нехай також D⁺(F) — група дифеоморфiзмiв D², що зберiгають орiєнтацiю i залишають iнварiантною кожну орбiту поля F. У статтi доведено, що θ продовжується до C∞-функцiї на всьому диску тодi i тiльки тодi, коли 1-струмiнь F у точцi O є «поворотом», тобто j¹F(O) = −y(∂/∂x) + x(∂/∂y). У цьому випадку група D⁺(F) гомотопiчно еквiвалентна до кола. This research is partially supported by grant of Ministry of Science and Education of Ukraine, № M/150-2009. The author is grateful to Ye. Polulyakh, V. Krouglov, and D. Ilyutko for useful discussions of Proposition 4.1. en Інститут математики НАН України Нелінійні коливання Symmetries of center singularities of plane vector fields Симетрiї особливостей типу центр векторних полiв на площинi Симметрии центральных особенностей плоских векторных полей Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Symmetries of center singularities of plane vector fields |
| spellingShingle |
Symmetries of center singularities of plane vector fields Maksymenko, S.I. |
| title_short |
Symmetries of center singularities of plane vector fields |
| title_full |
Symmetries of center singularities of plane vector fields |
| title_fullStr |
Symmetries of center singularities of plane vector fields |
| title_full_unstemmed |
Symmetries of center singularities of plane vector fields |
| title_sort |
symmetries of center singularities of plane vector fields |
| author |
Maksymenko, S.I. |
| author_facet |
Maksymenko, S.I. |
| publishDate |
2010 |
| language |
English |
| container_title |
Нелінійні коливання |
| publisher |
Інститут математики НАН України |
| format |
Article |
| title_alt |
Симетрiї особливостей типу центр векторних полiв на площинi Симметрии центральных особенностей плоских векторных полей |
| description |
Let D² ⊂ R² be a closed unit 2-disk centered at the origin O ∈ R², and F be a smooth vector field such that O is a unique singular point of F and all other orbits of F are simple closed curves wrapping once around O. Thus topologically O is a «center» singularity. Let θ : D² \ {O} → (0, +∞ ) be the function associating with each z ≠ O its period with respect to F. In general, such a function can not be even continuously defined at O. Let also D⁺(F) — be the group of diffeomorphisms of D², which preserve orientation and leave invariant each orbit of F. It is proved that θ smoothly extends to all of D² if and only if the 1-jet of F at O is a «rotation», that is, j¹F(O) = −y(∂/∂x) + x(∂/∂y). Then D⁺(F) is homotopy equivalent to a circle.
Нехай D² ⊂ R² — замкнений одиничний 2-диск з центром у початку координат O ∈ R² i F — гладке векторне поле, для якого O є єдиною особливою точкою, а всi iншi орбiти поля F є простими замкненими кривими, що охоплюють O. Таким чином, топологiчно O є особливiстю типу «центр». Нехай θ : D² \ {O} → (0, +∞ ) — функцiя, що ставить у вiдповiднiсть кожнiй точцi z ≠ O її перiод вiдносно F. Взагалi кажучи, ця функцiя не може бути продовжена навiть до неперервної функцiї на всьому D². Нехай також D⁺(F) — група дифеоморфiзмiв D², що зберiгають орiєнтацiю i залишають iнварiантною кожну орбiту поля F. У статтi доведено, що θ продовжується до C∞-функцiї на всьому диску тодi i тiльки тодi, коли 1-струмiнь F у точцi O є «поворотом», тобто j¹F(O) = −y(∂/∂x) + x(∂/∂y). У цьому випадку група D⁺(F) гомотопiчно еквiвалентна до кола.
|
| issn |
1562-3076 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/174925 |
| citation_txt |
Symmetries of center singularities of plane vector fields / S.I. Maksymenko // Нелінійні коливання. — 2010. — Т. 13, № 2. — С. 177-205. — Бібліогр.: 30 назв. — англ. |
| work_keys_str_mv |
AT maksymenkosi symmetriesofcentersingularitiesofplanevectorfields AT maksymenkosi simetriíosoblivosteitipucentrvektornihpolivnaploŝini AT maksymenkosi simmetriicentralʹnyhosobennosteiploskihvektornyhpolei |
| first_indexed |
2025-12-07T21:18:35Z |
| last_indexed |
2025-12-07T21:18:35Z |
| _version_ |
1850885868985778176 |