Oscillation of a class of nonlinear partial difference equations with continuous variables

This paper is concerned with a class of nonlinear partial difference equations with continuous variables. Some oscillation criteria are obtained using an integral transformation and inequalities. Розглянуто клас нелiнiйних частково рiзницевих рiвнянь з неперервними змiнними. Отримано деякi критерi...

Full description

Saved in:
Bibliographic Details
Published in:Нелінійні коливання
Date:2010
Main Authors: Guo, Y., Liu, A., Liu, T., Ma, Q.
Format: Article
Language:English
Published: Інститут математики НАН України 2010
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/174955
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Oscillation of a class of nonlinear partial difference equations with continuous variables / Y. Guo, A. Liu, T. Liu, Q. Ma // Нелінійні коливання. — 2010. — Т. 13, № 3. — С. 305-313. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-174955
record_format dspace
spelling Guo, Y.
Liu, A.
Liu, T.
Ma, Q.
2021-01-28T19:31:37Z
2021-01-28T19:31:37Z
2010
Oscillation of a class of nonlinear partial difference equations with continuous variables / Y. Guo, A. Liu, T. Liu, Q. Ma // Нелінійні коливання. — 2010. — Т. 13, № 3. — С. 305-313. — Бібліогр.: 11 назв. — англ.
1562-3076
https://nasplib.isofts.kiev.ua/handle/123456789/174955
517.9
This paper is concerned with a class of nonlinear partial difference equations with continuous variables. Some oscillation criteria are obtained using an integral transformation and inequalities.
Розглянуто клас нелiнiйних частково рiзницевих рiвнянь з неперервними змiнними. Отримано деякi критерiї осциляцiї з використанням iнтегральних перетворень та нерiвностей.
This work was supported by Natural Science Foundation of China (Grant Nos.10661002), Guangxi Natural Science Foundation Grant No.0832065 and Research Foundation for Outstanding Young Teachers, China University of Geosciences (Wuhan) (No.CUGQNL0841).
en
Інститут математики НАН України
Нелінійні коливання
Oscillation of a class of nonlinear partial difference equations with continuous variables
Осциляція класу нелінійних частково різницевих рівнянь з неперервними змінними
Осцилляция класса нелинейных частично разностных уравнений с непрерывными переменными
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Oscillation of a class of nonlinear partial difference equations with continuous variables
spellingShingle Oscillation of a class of nonlinear partial difference equations with continuous variables
Guo, Y.
Liu, A.
Liu, T.
Ma, Q.
title_short Oscillation of a class of nonlinear partial difference equations with continuous variables
title_full Oscillation of a class of nonlinear partial difference equations with continuous variables
title_fullStr Oscillation of a class of nonlinear partial difference equations with continuous variables
title_full_unstemmed Oscillation of a class of nonlinear partial difference equations with continuous variables
title_sort oscillation of a class of nonlinear partial difference equations with continuous variables
author Guo, Y.
Liu, A.
Liu, T.
Ma, Q.
author_facet Guo, Y.
Liu, A.
Liu, T.
Ma, Q.
publishDate 2010
language English
container_title Нелінійні коливання
publisher Інститут математики НАН України
format Article
title_alt Осциляція класу нелінійних частково різницевих рівнянь з неперервними змінними
Осцилляция класса нелинейных частично разностных уравнений с непрерывными переменными
description This paper is concerned with a class of nonlinear partial difference equations with continuous variables. Some oscillation criteria are obtained using an integral transformation and inequalities. Розглянуто клас нелiнiйних частково рiзницевих рiвнянь з неперервними змiнними. Отримано деякi критерiї осциляцiї з використанням iнтегральних перетворень та нерiвностей.
issn 1562-3076
url https://nasplib.isofts.kiev.ua/handle/123456789/174955
citation_txt Oscillation of a class of nonlinear partial difference equations with continuous variables / Y. Guo, A. Liu, T. Liu, Q. Ma // Нелінійні коливання. — 2010. — Т. 13, № 3. — С. 305-313. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT guoy oscillationofaclassofnonlinearpartialdifferenceequationswithcontinuousvariables
AT liua oscillationofaclassofnonlinearpartialdifferenceequationswithcontinuousvariables
AT liut oscillationofaclassofnonlinearpartialdifferenceequationswithcontinuousvariables
AT maq oscillationofaclassofnonlinearpartialdifferenceequationswithcontinuousvariables
AT guoy oscilâcíâklasunelíníinihčastkovoríznicevihrívnânʹzneperervnimizmínnimi
AT liua oscilâcíâklasunelíníinihčastkovoríznicevihrívnânʹzneperervnimizmínnimi
AT liut oscilâcíâklasunelíníinihčastkovoríznicevihrívnânʹzneperervnimizmínnimi
AT maq oscilâcíâklasunelíníinihčastkovoríznicevihrívnânʹzneperervnimizmínnimi
AT guoy oscillâciâklassanelineinyhčastičnoraznostnyhuravneniisnepreryvnymiperemennymi
AT liua oscillâciâklassanelineinyhčastičnoraznostnyhuravneniisnepreryvnymiperemennymi
AT liut oscillâciâklassanelineinyhčastičnoraznostnyhuravneniisnepreryvnymiperemennymi
AT maq oscillâciâklassanelineinyhčastičnoraznostnyhuravneniisnepreryvnymiperemennymi
first_indexed 2025-11-27T02:36:02Z
last_indexed 2025-11-27T02:36:02Z
_version_ 1850794727742373888
fulltext UDC 517 . 9 OSCILLATION OF A CLASS OF NONLINEAR PARTIAL DIFFERENCE EQUATIONS WITH CONTINUOUS VARIABLES* ОСЦИЛЯЦIЯ КЛАСУ НЕЛIНIЙНИХ ЧАСТКОВО РIЗНИЦЕВИХ РIВНЯНЬ З НЕПЕРЕРВНИМИ ЗМIННИМИ Y. Guo Graduate School China Acad. Eng. Phys. P. O. Box 2101, Beijing, 100088, P. R. China Guangxi Univ. Technology Liuzhou, 545006, P. R. China A. Liu, T. Liu, Q. Ma School Math. and Phys. China Univ. Geosci. Wuhan, 430074, P. R. China e-mail:wh_apliu@sina.com This paper is concerned with a class of nonlinear partial difference equations with continuous variables. Some oscillation criteria are obtained using an integral transformation and inequalities. Розглянуто клас нелiнiйних частково рiзницевих рiвнянь з неперервними змiнними. Отримано деякi критерiї осциляцiї з використанням iнтегральних перетворень та нерiвностей. 1. Introduction. Partial difference equations are difference equations which involve functions with two or more independent variables. Such equations arise in investigation of random walk problems, molecular structure problems [1], and numerical difference approximation problems [2], etc. Recently, oscillation problems for partial difference equations with invariable coeffici- ents and discrete variables have been investigated in [3 – 8]. We can further investigate oscillati- on properties of nonlinear equations with variable coefficients and continuous variables and obtain some oscillation criteria. In this paper, we consider a class of nonlinear partial difference equations with continuous variables, p1(x, y)A(x + a, y + b) + p2(x, y)A(x + a, y) + p3(x, y)A(x, y + b)− p4(x, y)A(x, y)+ + m∑ i=1 hi(x, y, A(x− σi, y − τi)) = 0, (1) ∗ This work was supported by Natural Science Foundation of China (Grant Nos.10661002), Guangxi Natural Science Foundation Grant No.0832065 and Research Foundation for Outstanding Young Teachers, China University of Geosciences (Wuhan) (No.CUGQNL0841). c© Y. Guo, A. Liu, T. Liu, Q. Ma, 2010 ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 3 305 306 Y. GUO, A. LIU, T. LIU, Q. MA where p1(x, y) ∈ C(R+×R+, [0,∞)); p2(x, y), p3(x, y), p4(x, y) ∈ C(R+×R+, (0,∞)); a, b, σi, τi are negative and hi(x, y, u) ∈ C(R+ ×R+ ×R,R), i = 1, . . . ,m. Let σ = maxi=1,...,m{σi}, τ = maxi=1,...,m{τi}. A solution of (1) is defined to be a conti- nuous function A(x, y), for all x ≥ −σ, y ≥ −τ, which satisfies (1) on R+ × R+. A solution A(x, y) of (1) is said to be oscillatory if it is neither eventually positive nor eventually negative. Some oscillation criteria for a solution of (1) are obtained using integral transformation and inequalities. Our results extend some oscillation properties of nonlinear equations with invari- able coefficients and discrete variables to nonlinear equations with variable coefficients and continuous variables. 2. Main lemmas. We assume that the following conditions are satisfied throughout this paper: (I) p1(x, y) ≥ p1 ≥ 0, p2(x, y) ≥ p2 > 0, p3(x, y) ≥ p3 > 0, 0 < p4(x, y) ≤ p4, and pi, i = 1, 2, 3, 4, are constants and also satisfy p2, p3 ≥ p4; (II) τi = kia + θi, σ = lib + ξi, i = 1, . . . ,m, where ki, li are nonnegative integers and θi ∈ (a, 0], ξi ∈ (b, 0]. Lemma 1. Assume that (i) hi ∈ C(R+ × R+ × R,R), uhi(x, y, u) > 0 for u 6= 0, and hi(x, y, u), i = 1, . . . ,m, is a nondecreasing function in u; (ii) hi(x, y, u), i = 1, . . . ,m, is convex in u for u ≥ 0. Let A(x, y) be an eventually positive solution of (1), then there exists a positive function Z(x, y) = 1 ab ∫ x x+a ∫ y y+b A(u, v) du dv eventually satisfying the following results: (1) if mini=1,...,m{ki} 6= 0 and mini=1,...,m{li} 6= 0, then p1Z(x + a, y + b) + p2Z(x + a, y) + p3Z(x, y + b)− p4Z(x, y)+ + m∑ i=1 hi(x, y, Z(x− σi, y − τi)) ≤ 0; (2) (2) if mini=1,...,m{ki} = 0 and mini=1,...,m{li} = 0, then p1Z(x + a, y + b) + p2Z(x + a, y) + p3Z(x, y + b)− p4Z(x, y)+ + m∑ i=1 hi(x, y, Z(x− kia, y − lib)) ≤ 0; (3) (3) if mini=1,...,m{ki} = 0 and mini=1,...,m{li} 6= 0, then p1Z(x + a, y + b) + p2Z(x + a, y) + p3Z(x, y + b)− p4Z(x, y)+ + m∑ i=1 hi(x, y, Z(x− σi, y − lib)) ≤ 0; (4) ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 3 OSCILLATION OF A CLASS OF NONLINEAR PARTIAL DIFFERENCE EQUATIONS . . . 307 (4) if mini=1,...,m{ki} 6= 0 and mini=1,...,m{li} = 0, then p1Z(x + a, y + b) + p2Z(x + a, y) + p3Z(x, y + b)− p4Z(x, y)+ + m∑ i=1 hi(x, y, Z(x− kia, y − τi)) ≤ 0. (5) Proof. From (I), we have the following inequality: p4(A(x + a, y) + A(x, y + b)−A(x, y)) ≤ ≤ p1A(x + a, y + b) + p2A(x + a, y) + p3A(x, y + b)− p4A(x, y) ≤ ≤ p1(x, y)A(x + a, y + b) + p2(x, y)A(x + a, y)+ + p3(x, y)A(x, y + b)− p4(x, y)A(x, y) < 0 eventually. Since Z(x, y) = 1 ab x∫ x+a y∫ y+b A(u, v) du dv, (6) we have ∂Z(x, y) ∂x = 1 ab y∫ y+b (A(x, v)−A(x + a, v))dv > 0 (7) and ∂Z(x, y) ∂y = 1 ab x∫ x+a (A(u, y)−A(u, y + b))du > 0. (8) From the above, we have Z(x, y) is nondecreasing in x and y eventually. Integrating (1), from (I) we have p1Z(x + a, y + b) + p2Z(x + a, y) + p3Z(x, y + b)− p4Z(x, y)+ + 1 ab m∑ i=1 x+a∫ x y+b∫ y hi(u, v,A(u− σi, v − τi)) dv du ≤ 0. By (i), (ii), and Jensen’s inequality, we obtain the following inequality: p1Z(x+a, y + b)+p2Z(x+a, y)+p3Z(x, y + b)−p4Z(x, y)+ m∑ i=1 hi(x, y, Z(x−σi, y− τi)) ≤ 0. ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 3 308 Y. GUO, A. LIU, T. LIU, Q. MA Thus (2) holds. Since a, b, τi, σi are negative real numbers, there exist nonnegative integers ki and li sati- sfying σi = kia + θi, τi = lib + ξi, where a < θi ≤ 0, b < ξi ≤ 0, i = 1, 2, . . . ,m. From (7) and (8), we obtain Z(x, y) is nondecreasing eventually. So if min i=1,...,m {ki} 6= 0, min i=1,...,m {li} 6= 0, we have Z(x−σi, y−τi) ≥ Z(x−kia, y− lib), i = 1, 2, . . . ,m. Since hi(x, y, u), i = 1, 2, . . . ,m, is nondecreasing in u, we have p1Z(x+a, y+b)+p2Z(x+a, y)+p3Z(x, y+b)−p4Z(x, y)+ m∑ i=1 hi(x, y, Z(x−kia, y− lib)) ≤ 0. Hence, (3) holds. Similarly if mini=1,...,m{ki} = 0, mini=1,...,m{li} 6= 0, Z(x, y) is nondecreasing in x and y eventually, we have Z(x − σi, y − τi) ≥ Z(x − σi, y − lib). Since hi(x, y, u), i = 1, 2, . . . ,m, is nondecreasing in u eventually, we have the following inequality: p1Z(x+a, y+b)+p2Z(x+a, y)+p3Z(x, y+b)−p4Z(x, y)+ m∑ i=1 hi(x, y, Z(x−σi, y− lib)) ≤ 0, implying (4). Similarly if mini=1,...,m{ki} 6= 0, mini=1,...,m{li} = 0, i = 1, 2, . . . ,m, Z(x, y) is nondecrea- sing in x and y eventually, we have Z(x − σi, y − τi) ≥ Z(x − kia, y − τi). Since hi(x, y, u) is nondecresing in u, we have the following inequality: p1Z(x+a, y+b)+p2Z(x+a, y)+p3Z(x, y+b)−p4Z(x, y)+ m∑ i=1 hi(x, y, Z(x−kia, y−τi)) ≤ 0. Hence, (5) holds. The proof is completed. By a similar method, we can obtain properties of an eventually negative solution of (1). Lemma 2. Assume that (i) hi ∈ C(R+ × R+ × R,R), uhi(x, y, u) > 0 for u 6= 0 and hi(x, y, u), i = 1, . . . ,m, is a nondecreasing function in u; (ii) hi(x, y, u), i = 1, . . . ,m, is concave in u for u ≤ 0. Let A(x, y) be an eventually negative solution of (1), then there exists a negative function Z(x, y) = 1 ab ∫ x x+a ∫ y y+b A(u, v)dudv eventually satisfying the following results: (1) if mini=1,...,m{ki} 6= 0 and mini=1,...,m{li} 6= 0, then p1Z(x + a, y + b) + p2Z(x + a, y) + p3Z(x, y + b)− p4Z(x, y)+ + m∑ i=1 hi(x, y, Z(x− σi, y − τi)) ≥ 0; (9) ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 3 OSCILLATION OF A CLASS OF NONLINEAR PARTIAL DIFFERENCE EQUATIONS . . . 309 (2) if mini=1,...,m{ki} = 0 and mini=1,...,m{li} = 0, then p1Z(x + a, y + b) + p2Z(x + a, y) + p3Z(x, y + b)− p4Z(x, y)+ + m∑ i=1 hi(x, y, Z(x− kia, y − lib)) ≥ 0; (10) (3) if mini=1,...,m{ki} = 0 and mini=1,...,m{li} 6= 0, then p1Z(x + a, y + b) + p2Z(x + a, y) + p3Z(x, y + b)− p4Z(x, y)+ + m∑ i=1 hi(x, y, Z(x− σi, y − lib)) ≥ 0; (11) (4) if mini=1,...,m{ki} 6= 0 and mini=1,...,m{li} = 0, then p1Z(x + a, y + b) + p2Z(x + a, y) + p3Z(x, y + b)− p4Z(x, y)+ + m∑ i=1 hi(x, y, Z(x− kia, y − τi)) ≥ 0. (12) 3. Main results. In the following, we investigate oscillatory properties of a solution of (1) and obtain the main results of this paper. Theorem 1. Assume that (i) hi(x, y, u) ∈ C(R+ × R+ × R,R) is nondecreasing in u and uhi(x, y, u) > 0, i = = 1, 2, . . . ,m, for all u 6= 0, (ii) lim inf x,y→+∞,u→0 hi(x, y, u)/u = Si ≥ 0, m∑ i=1 Si > 0, i = 1, 2, . . . ,m, (iii) hi(x, y, u) is convex in u for u > 0, hi(x, y, u), i = 1, . . . ,m, is concave in u for u < 0, (iv) one of the following conditions holds: m∑ i=1 Si (ηi + 1)ηi+1 ηηi i (p1 + p2 + p3)ηi p (ηi+1) 4 > 1, ηi = min{ki, li} > 0, i = 1, . . . ,m, (13) m∑ i=1 Si kki i (ki − 1)ki−1 pki−1 2 pki 4 > 1, min i=1,...,m {ki} > 0, min i=1,...,m {li} = 0, (14) m∑ i=1 Si llii (li − 1)li−1 pli−1 3 pli 4 > 1, min i=1,...,m {ki} = 0, min i=1,...,m {li} > 0, (15) 1 p4 m∑ i=1 Si > 1, min i=1,...,m {ki} = min i=1,...,m {li} = 0. (16) Then every solution of (1) is oscillatory. ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 3 310 Y. GUO, A. LIU, T. LIU, Q. MA Proof. Assume the contrary. Let A(x, y) be an eventually positive solution of (1), and Z(x, y) be defined by (6). Then by Lemma 1, we obtain limx,y→+∞ Z(x, y) = ζ ≥ 0. In the following, we claim that ζ = 0. Otherwise, let ζ > 0. By Lemma 1, we know that (2) holds. From (2) and condition (I), we have p1Z(x + a, y + b) + p4(Z(x + a, y) + Z(x, y + b)− Z(x, y)) ≤ ≤ p1Z(x + a, y + b) + p2Z(x + a, y) + p3Z(x, y + b)− p4Z(x, y) ≤ 0. So Z(x + a, y) + Z(x, y + b)− Z(x, y) ≤ 0. (17) Taking the limit on both side of (17), we have ζ ≤ 0. Consider ζ ≥ 0. Then we have ζ = 0. If mini=1,...,m{ki} > 0, mini=1,...,m{li} > 0, in the view of (2), we have (p1 + p2 + p3)Z(x + a, y + b) Z(x, y) − p4 ≤ p1Z(x + a, y + b) + p2Z(x + a, y) + p3Z(x, y + b) Z(x, y) − p4 ≤ ≤ − m∑ i=1 hi(x, y, Z(x− σi, y − τi)) Z(x, y) . (18) Since Z(x, y) is nondecreasing eventually, from (18) for all large x and y we have (p1 + p2 + p3)Z(x + a, y + b) Z(x, y) − p4 ≤ − m∑ i=1 hi(x, y, Z(x− ηia, y − ηib)) Z(x, y) = = − m∑ i=1 hi(x, y, Z(x− ηia, y − ηib)) Z(x− ηia, y − ηib) ηi∏ j=1 Z(x− ja, y − jb) Z(x− (j − 1)a, y − (j − 1)b) , (19) where ηi = min{ki, li}, i = 1, . . . ,m. Let α(x, y) = Z(x, y)/Z(x + a, y + b). Then α(x, y) > 1 for all large x and y. From (19), we have p1 + p2 + p3 α(x, y) + m∑ i=1 hi(x, y, Z(x− ηia, y − ηib)) Z(x− ηia, y − ηib) ηi∏ j=1 α(x− ja, y − jb) ≤ p4, i.e., (p1 + p2 + p3) + m∑ i=1 hi(x, y, Z(x− ηia, y − ηib)) Z(x− ηia, y − ηib) ηi∏ j=1 α(x− ja, y − jb)α(x, y) ≤ p4α(x, y). (20) By (ii), (20) implies that α(x, y) is bounded. Let lim inf x,y→+∞ α(x, y) = β. Taking the limit inferior on both sides of (20), we obtain (p1 + p2 + p3) + m∑ i=1 Siβ ηi+1 ≤ p4β, ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 3 OSCILLATION OF A CLASS OF NONLINEAR PARTIAL DIFFERENCE EQUATIONS . . . 311 i.e., p1 + p2 + p3 β ≤ p4 − m∑ i=1 Siβ ηi < p4. (21) Hence, β > p1 + p2 + p3 p4 . Since ∑m i=1 Siβ ηi+1/(p4β − (p1 + p2 + p3)) ≤ 1, computing the minimum of the function f(x) = xηi+1/(p4x− (p1 + p2 + p3)) as x > p1 + p2 + p3 p4 we obtain min β> p1+p2+p3 p4 βηi+1 p4β − (p1 + p2 + p3) = (ηi + 1)ηi+1 ηηi i (p1 + p2 + p3)ηi pηi+1 4 . So we have ∑m i=1 Si (ηi + 1)ηi+1 ηηi i (p1 + p2 + p3)ηi pηi+1 4 ≤ 1 which is contrary to (13). Therefore if (13) holds we can obtain that every solution of (1) is oscillatory. If mini=1,...,m{ki} > 0, mini=1,...,m{li} = 0, by Lemma 1, we obtain p1Z(x+a, y+b)+p2Z(x+a, y)+p3Z(x, y+b)−p4Z(x, y)+ m∑ i=1 hi(x, y, Z(x−kia, y−τi)) ≤ 0. Then we have p2Z(x + a, y) Z(x, y) − p4 ≤ − m∑ i=1 hi(x, y, Z(x− kia, y − τi) Z(x, y) = = − m∑ i=1 hi(x, y, Z(x− kia, y − τi)) Z(x− kia, y − τi) Z(x− a, y − τi) Z(x, y) ki∏ j=2 Z(x− ja, y − τi) Z(x− (j − 1)a, y − τi) . (22) Since Z(x, y) is nondecreasing in x, y eventually, we have Z(x − a, y − τi)/Z(x, y) > 1 for all large x and y. From (22), we have p2Z(x + a, y) Z(x, y) + m∑ i=1 hi(x, y, Z(x− kia, y − τi)) Z(x− kia, y − τi) ki∏ j=2 Z(x− ja, y − τi) Z(x− (j − 1)a, y − τi) ≤ p4. (23) Let α(x, y) = Z(x, y)/Z(x + a, y) > 1. From (23), we have p2 α(x, y) + m∑ i=1 hi(x, y, Z(x− kia, y − τi)) Z(x− kia, y − τi) ki∏ j=2 α(x− ja, y − τi) ≤ p4. (24) By condition (ii) the above inequality implies that α(x, y) is bounded. Let lim inf x,y→+∞ α(x, y) = = β. From (22), we can obtain p2 + m∑ i=1 hi(x, y, Z(x− kia, y − τi)) Z(x− kia, y − τi) ki∏ j=1 α(x− ja, y − τi)α(x, y) ≤ p4α(x, y). (25) ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 3 312 Y. GUO, A. LIU, T. LIU, Q. MA Taking the limit inferior on both sides of (25), we have p2 + ∑m i=1 Siβ ki ≤ p4β. Hence we have p2 β + ∑m i=1 Siβ ki−1 ≤ p4, i.e., p2 β ≤ p4 − ∑m i=1 Siβ ki−1 < p4. Then we obtain β > p2 p4 and ∑m i=1 Siβ ki−1/(p4β − p2) ≤ 1. Since minβ> p2 p4 βki p4β − p2 = pki−1 2 pki 4 kki i (ki − 1)ki−1 , we have ∑m i=1 Si pki−1 2 pki 4 kki i (ki − 1)ki−1 ≤ 1, which contradicfs (14). So if (14) holds we can obtain that every solution of (1) is oscillatory. Similarly, we can prove that if (15) holds then we can also obtain every solution of (1) is oscillatory. If mini=1,...,m{ki} = mini=1,...,m{li} = 0, from Lemma 1, we know that (3) holds. Hence we have p1Z(x + a, y + b) + p2Z(x + a, y) + p3Z(x, y + b)− p4Z(x, y)+ + m∑ i=1 hi(x, y, Z(x, y)) ≤ p1Z(x + a, y + b) + p2Z(x + a, y)+ + p3Z(x, y + b)− p4Z(x, y) + m∑ i=1 hi(x, y, Z(x− σi, y − τi)) ≤ 0. Then m∑ i=1 hi(x, y, Z(x, y)) Z(x, y) − p4 ≤ 0. (26) Taking the limit inferior on both sides of (26), we have ∑m i=1 Si ≤ p4, which is contrary to (16). So if (16) holds we can obtain that every solution of (1) is oscillatory. If A(x, y) is the eventually negative solution of (1), we can obtain a contradiction by assu- ming that A(x, y) is an eventually negative solution of equation (1). Therefore we know the result is correct. The proof is over. The results indicate that there are some criteria of oscillatory properties of solutions of some partial difference equations with forward front difference. In some sense, the results play some roles in investigating properties of solutions of advanced partial differential equations. 1. Li X. P. Partial difference equations used in the study of molecular orbits (in Chinese) // Acta Chim. SINICA. — 1982. — 40. — P. 688 – 698. 2. Zhang B. G., Liu S. T., Cheng S. S. Oscillation of a class of delay partial difference equations // J. Difference Equat. and Appl. — 1995. — 1. — P. 215 – 226. 3. Kelley W. G., Peterson A. C. Difference equations. — New York: Acad. Press, 1991. 4. Zhang B. G., Liu S. T. On the oscillation of two partial difference equations // J. Math. Anal. and Appl. — 1997. — 206. — P. 480 – 492. 5. Zhang B. G., Liu B. M. Oscillation criteria of certain nonlinear partial difference equations // Comput. Math. Appl. — 1999. — 38. — P. 107 – 112. 6. Agarwal R. P., Yong Zhou. Oscillation of partial difference equations with continuous variables // Math. and Comput. Modelling. — 2000. — 31. — P. 17 – 29. ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 3 OSCILLATION OF A CLASS OF NONLINEAR PARTIAL DIFFERENCE EQUATIONS . . . 313 7. Zhang B. G., Tian C. J. Oscillation criteria of a class of partial difference equations with delays // Comput. Math. Appl. — 2004. — 48. — P. 291 – 303. 8. Cui B. T., Liu Y. Q. Oscillation for partial difference equation with continuous variables // J. Comput. and Appl. Math. — 2003. — 154. — P. 373 – 391. 9. Liu A. P., Guo Y. F. Oscillation of the solutions of nonlinear delay hyperbolic partial differential equations // Chin. Quart. J. Math. — 2004. — 19, № 4. — P. 373 – 378. 10. Anping Liu, Qingxia Ma, Mengxing He. Oscillation of nonlinear impulsive parabolic equations of neutral type // Rocky Mountain J. Math. — 2006. — 36, № 3. — P. 1011 – 1026. 11. Guo Y. F., Liu A. P. Oscillation of nonlinear impulsive parabolic differential equation with several delays // Ann. Different. Equat. — 2005. — 21, № 3. — P. 286 – 289. Received 07.02.06, after revision — 11.04.09 ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 3