Analysis of the shift in the superconducting transition under pressure in the Anderson-Hubbard two-orbital model

The two-orbital Hubbard model is used to obtain formulas for the fermion excitation spectrum in the energy bands hybridized by Anderson's interaction. A transition to the Hubbard operators, which diagonalizes the one-site part of the Hamiltonian, allows us to use the Green's temperature fu...

Full description

Saved in:
Bibliographic Details
Published in:Физика низких температур
Date:1998
Main Author: Kosov, A.A.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 1998
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/174987
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Analysis of the shift in the superconducting transition under pressure in the Anderson-Hubbard two-orbital model / A.A. Kosov // Физика низких температур. — 1998. — Т. 24, № 3. — С. 204-214. — Бібліогр.: 22 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:The two-orbital Hubbard model is used to obtain formulas for the fermion excitation spectrum in the energy bands hybridized by Anderson's interaction. A transition to the Hubbard operators, which diagonalizes the one-site part of the Hamiltonian, allows us to use the Green's temperature function technique to take into account the interstitial jump term while studying the superconducting properties of the model. An analysis of the lower part of the energy spectrum leads to a formula for the superconducting transition temperature Tc associated with the pairing of quasiparticles in one of the correlated bands. The dependence of Tc on electron concentration and energy parameters determining the intraatomic correlation is studied. Proposing a simple relation between the value of pressure (P) and width of the correlated band, the dependence of Tc on the pressure was defined. Good agreement between the theoretical calculation of the dependence of Tc on the pressure and the experimental results for Y1-xPrxBa₂Cu₃O₇-δ is found. Comparison of the theoretical and experimental results for the dependence of Tc and its derivative d(lnTc)/dP on Sr and Bi-content (x) in La₂-xSrxCuO₄ has been made. It is concluded that the model under consideration can be used for the description of the shift in Tc under pressure for a number of superconductors.
ISSN:0132-6414