HIBP diagnostic injectors for Uragan-2M and TJ-II stellarators
The testing and first operations of the Heavy Ion Beam Probe (HIBP) plasma diagnostic injectors for stellarator Uragan-2M and TJ-ІІ is presented in this work. The increasing of plasma density in modern fusion devices up to (3...7)×10^19m^-3 (TJ-ІІ and T-10) leads to huge probing ion beam absorption...
Збережено в:
| Дата: | 2010 |
|---|---|
| Автори: | , , , , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2010
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/17507 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | HIBP diagnostic injectors for Uragan-2M and TJ-II stellarators / I.S. Bondarenko, A.A. Chmyga, G.N. Deshko, A.D. Komarov, A.S. Kozachek, L.I. Krupnik, S.M. Khrebtov, Yu.I. Taschev, A.I. Zhezhera // Вопросы атомной науки и техники. — 2010. — № 6. — С. 211-213. — Бібліогр.: 3 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-17507 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-175072025-02-23T18:36:24Z HIBP diagnostic injectors for Uragan-2M and TJ-II stellarators Диагностические зппти-инжекторы для стеллараторов Ураган-2М и TJ-ІІ Bondarenko, I.S. Chmyga, A.A. Deshko, G.N. Komarov, A.D. Kozachek, A.S. Krupnik, L.I. Khrebtov, S.M. Taschev, Yu.I. Zhezhera, A.I. Диагностика плазмы The testing and first operations of the Heavy Ion Beam Probe (HIBP) plasma diagnostic injectors for stellarator Uragan-2M and TJ-ІІ is presented in this work. The increasing of plasma density in modern fusion devices up to (3...7)×10^19m^-3 (TJ-ІІ and T-10) leads to huge probing ion beam absorption in central plasma area. One way to obtain the HIBP information from plasma centre is the increasing of primary ion beam current. A new modification of HIBP injectors for TJ-ІІ and Uragan 2M stellarators was developed and tested in IPP NSC KIPT with energy up to 100 keV and ion current up to 300 μA. 2010 Article HIBP diagnostic injectors for Uragan-2M and TJ-II stellarators / I.S. Bondarenko, A.A. Chmyga, G.N. Deshko, A.D. Komarov, A.S. Kozachek, L.I. Krupnik, S.M. Khrebtov, Yu.I. Taschev, A.I. Zhezhera // Вопросы атомной науки и техники. — 2010. — № 6. — С. 211-213. — Бібліогр.: 3 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/17507 en application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Диагностика плазмы Диагностика плазмы |
| spellingShingle |
Диагностика плазмы Диагностика плазмы Bondarenko, I.S. Chmyga, A.A. Deshko, G.N. Komarov, A.D. Kozachek, A.S. Krupnik, L.I. Khrebtov, S.M. Taschev, Yu.I. Zhezhera, A.I. HIBP diagnostic injectors for Uragan-2M and TJ-II stellarators |
| description |
The testing and first operations of the Heavy Ion Beam Probe (HIBP) plasma diagnostic injectors for stellarator Uragan-2M and TJ-ІІ is presented in this work. The increasing of plasma density in modern fusion devices up to (3...7)×10^19m^-3 (TJ-ІІ and T-10) leads to huge probing ion beam absorption in central plasma area. One way to obtain the HIBP information from plasma centre is the increasing of primary ion beam current. A new modification of HIBP injectors for TJ-ІІ and Uragan 2M stellarators was developed and tested in IPP NSC KIPT with energy up to 100 keV and ion current up to 300 μA. |
| format |
Article |
| author |
Bondarenko, I.S. Chmyga, A.A. Deshko, G.N. Komarov, A.D. Kozachek, A.S. Krupnik, L.I. Khrebtov, S.M. Taschev, Yu.I. Zhezhera, A.I. |
| author_facet |
Bondarenko, I.S. Chmyga, A.A. Deshko, G.N. Komarov, A.D. Kozachek, A.S. Krupnik, L.I. Khrebtov, S.M. Taschev, Yu.I. Zhezhera, A.I. |
| author_sort |
Bondarenko, I.S. |
| title |
HIBP diagnostic injectors for Uragan-2M and TJ-II stellarators |
| title_short |
HIBP diagnostic injectors for Uragan-2M and TJ-II stellarators |
| title_full |
HIBP diagnostic injectors for Uragan-2M and TJ-II stellarators |
| title_fullStr |
HIBP diagnostic injectors for Uragan-2M and TJ-II stellarators |
| title_full_unstemmed |
HIBP diagnostic injectors for Uragan-2M and TJ-II stellarators |
| title_sort |
hibp diagnostic injectors for uragan-2m and tj-ii stellarators |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2010 |
| topic_facet |
Диагностика плазмы |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/17507 |
| citation_txt |
HIBP diagnostic injectors for Uragan-2M and TJ-II stellarators / I.S. Bondarenko, A.A. Chmyga, G.N. Deshko, A.D. Komarov, A.S. Kozachek, L.I. Krupnik, S.M. Khrebtov, Yu.I. Taschev, A.I. Zhezhera // Вопросы атомной науки и техники. — 2010. — № 6. — С. 211-213. — Бібліогр.: 3 назв. — англ. |
| work_keys_str_mv |
AT bondarenkois hibpdiagnosticinjectorsforuragan2mandtjiistellarators AT chmygaaa hibpdiagnosticinjectorsforuragan2mandtjiistellarators AT deshkogn hibpdiagnosticinjectorsforuragan2mandtjiistellarators AT komarovad hibpdiagnosticinjectorsforuragan2mandtjiistellarators AT kozachekas hibpdiagnosticinjectorsforuragan2mandtjiistellarators AT krupnikli hibpdiagnosticinjectorsforuragan2mandtjiistellarators AT khrebtovsm hibpdiagnosticinjectorsforuragan2mandtjiistellarators AT taschevyui hibpdiagnosticinjectorsforuragan2mandtjiistellarators AT zhezheraai hibpdiagnosticinjectorsforuragan2mandtjiistellarators AT bondarenkois diagnostičeskiezpptiinžektorydlâstellaratorovuragan2mitjíí AT chmygaaa diagnostičeskiezpptiinžektorydlâstellaratorovuragan2mitjíí AT deshkogn diagnostičeskiezpptiinžektorydlâstellaratorovuragan2mitjíí AT komarovad diagnostičeskiezpptiinžektorydlâstellaratorovuragan2mitjíí AT kozachekas diagnostičeskiezpptiinžektorydlâstellaratorovuragan2mitjíí AT krupnikli diagnostičeskiezpptiinžektorydlâstellaratorovuragan2mitjíí AT khrebtovsm diagnostičeskiezpptiinžektorydlâstellaratorovuragan2mitjíí AT taschevyui diagnostičeskiezpptiinžektorydlâstellaratorovuragan2mitjíí AT zhezheraai diagnostičeskiezpptiinžektorydlâstellaratorovuragan2mitjíí |
| first_indexed |
2025-11-24T11:25:42Z |
| last_indexed |
2025-11-24T11:25:42Z |
| _version_ |
1849670807399170048 |
| fulltext |
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2010. 6. 211
Series: Plasma Physics (16), p. 211-213.
HIBP DIAGNOSTIC INJECTORS FOR URAGAN - 2M
AND TJ- STELLARATORS
I.S. Bondarenko, A.A. Chmyga, G.N. Deshko, A.D. Komarov, A.S. Kozachek, L.I. Krupnik,
S.M. Khrebtov, Yu.I. Taschev, A.I. Zhezhera
Institute of Plasma Physics NSC “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
The testing and first operations of the Heavy Ion Beam Probe (HIBP) plasma diagnostic injectors for stellarator
Uragan-2M and TJ- is presented in this work. The increasing of plasma density in modern fusion devices up to
(3...7)×1019 m-3 (TJ- and T-10) leads to huge probing ion beam absorption in central plasma area. One way to obtain
the HIBP information from plasma centre is the increasing of primary ion beam current. A new modification of HIBP
injectors for TJ- and Uragan 2M stellarators was developed and tested in IPP NSC KIPT with energy up to 100 keV
and ion current up to 300 µA.
PACS: 52.70.Nc
INTRODUCTION
The Heavy Ion Beam Probing (HIBP) diagnostics is
known as a unique tool for the direct contact less
measurements of plasma electric field potential [1-3]. Its
ability to measure plasma density, temperature and
plasma current profile distribution is well known also.
This method is based on the changing of the primary ion
beam parameters (charge, intensity and pathway) when it
goes through a plasma volume because of collisions with
electrons (mostly) and interaction with a confining
magnetic field. The collisions of primary and secondary
probing ions with plasma electrons also lead to their
absorption in areas of large plasma density. Fig. 1
illustrated this process in TJ-II stellarator. The total
current to analyzer detector plates (black lines) and
average plasma density (red) are presented at Fig. 1 for
primary beam current of 58 µA. One can see the 5–6
times decreasing of total secondary ion current value from
central plasma area (grey liners) with average plasma
density increasing from 1 to 2,5×1019m-3.
Fig. 1. Total detector current and plasma density values
for primary ion beam current of 58 µA
So it is necessary to increase the primary ion probing
current in 5–6 times or more for better secondary beam
detecting.
NEW MODIFICATION OF HIBP INJECTOR
In order of primary ion current increasing a new HIBP
accelerator was developed in IPP NSC KIPT. This
accelerator has a three-electrode lens for primary ion
beam focusing before entrance to sections of accelerating
tube. Extracting electrode was done flat, not conical, as
usually in these systems. This lens design showed at
Fig. 2.
Fig. 2. Three-electrode lens for primary ion beam focusing
This addition lens permits us to increase the extracting
voltage and extracting ion current comparatively to
previous accelerator designs [3] from 100 to 300 µA. The
focusing electrode potential is equal to emitter potential in
this system and focusing distance may be controlled by
extracting potential value. In order to have the remote
control of extracting voltage and ion beam focusing
distance we applied extracting voltage control system.
This system based on MJ10N1500 Glassman power
supply ((-10) kV; 1,5 mA) for extracting voltage
producing. This power supply placed under accelerating
high voltage and is feeding from (+36) V batteries. This
system allows controlling extracting voltage and focusing
distance for ion beam current values from 10 to 300 µA
and from 2 to 4 m. New injector system was tested in IPP
NSC KIPT, for beam energy up to 110 keV. Test results
are shown at Figs. 3–5. Fig. 3 presented the dependence
of ion beam current on beam energy (accelerating
voltage) with fixed thermo-ion emitter temperature.
212
Fig. 3. Ion beam current dependence on accelerating
voltage
Fig. 4. Ion beam current dependence on emitter heating
power. Ion beam energy is 100 keV
At Fig. 4 one can see the dependence of ion beam
current on emitter heating power (emitter temperature) for
100 kV accelerating voltage. These measurements were
done by Faraday cup at the distance of 2 m from emitter.
Fig. 5 illustrated ion beam profiles at various distances
from emitter. Ion beam profiles were detected by two wire
detectors placed at 2 and 3,5 m from ion emitter and
collector with suppressed secondary electron emission
placed at 3,5 m. This collector has also a thermocouple
for measurements of an input energy of ion beam. Ion
beam current measurements by two independent methods
give the same values. Beam profiles were obtained by
beam sweeping across the detector wires. The distance
between wires (and profile peaks) is 20 mm.
Fig. 5. Ion beam profiles. Faraday cup current
(100 µA/div)- blue, ion beam profiles at 3,5 m – yellow,
ion beam profiles at 2 m – red & green
New injector system is operating now at diagnostic
injector of HIBP system of TJ-II stellarator in CIEMAT,
Madrid, Spain during winter 2009 and spring-summer
2010. Operating primary ion beam current was increased
up to 150 µA (Fig. 6).
Fig. 6. Dependence of ion beam current to Faraday cup
on emitter heating current
Fig. 7–9 shows total detector current, plasma density
and electron temperature values for primary ion current
130 µA. These results were obtained at TJ-II stellarator
during plasma heating by ECRH and NBI modes. NBI
heating switches on at 1070 ms, the average plasma
density increases and electron temperature is going down.
During NBI mode of plasma heating the central drop
of density profile became deeper, but it may be clear
detected by increased primary beam current. Fig. 10
shows total secondary ion beam current dependence on
primary ion current. One can see a linear increasing of the
secondary detector signal from central plasma with
primary beam increasing. So, we have a hope of detecting
central plasma area with 300 µA primary ion beam for
higher average plasma density.
Fig. 7. Total detector current - (black), plasma density -
(blue) and electron temperature - (red) values for primary
ion current 130 µA
Fig. 8. Total detector current profile- (black), plasma
density - (blue) and electron temperature - (red) values
for low density (ECRH mode)
213
Fig. 9. Total detector current profile - (black), plasma
density - (blue) and electron temperature - (red) values
for high density (ECRH+NBI mode)
Fig. 10. Total secondary ion beam current depending on
primary ion current. Red – central plasma area ~0,1,
black – maximal current value at ~0,5,
is plasma radius)
CONCLUSIONS
New heavy ion beam probe injector design was
elaborated in IPP NSC KIPT. This injector was tested for
cesium ion beam with energy up to 110 keV and ion
current up to 300 µA in Kharkov, PPP-2 stand device, and
125 keV, 150 µA in Madrid, TJ-II stellarator. These
testing show a possibility of detecting plasma parameters
in the central plasma area by HIBP in high average
plasma density conditions. These injectors will be
installed in Kharkov to Uragan-2M stellarator and in
Madrid to the second HIBP system of TJ-II stellarator.
Work is carried out according to the STCU Project 4703.
REFERENCES
1. I.S. Bondarenko, S.M. Khrebtov, L.I. Krupnik,
I.S. Nedzelskij, O.A. Gordeev, N.V. Kharchev,
A.V. Melnikov, K.N. Tarasyan, C. Hidalgo, I. Garcia-
Cortes. Heavy ion beam probe diagnostics on TJ-1
tokamak and the measurements of the plasma potential
and density profiles // Rev Sci. Instrum. 1997, v. 68,
N 1, p. 312.
2. I.S. Bondarenko, A.A. Chmyga, G.N. Deshko,
A.D. Komarov, A.C. Kozachok, L.I. Krupnik,
S.M. Khrebtov, A. Zhezhera. HIBP diagnostic for
Uragan 2M stellarator//Problems of Atomic Science and
Technology. Series “Plasma Physics” (15). 2009, N 1,
p. 40-42.
3. L.I. Krupnik, A.D. Komarov, A.S. Kozachek,
A.V. Melnikov, I.S. Nedzelskyi. High-Intensity
Thermoionic Alcali Ion Sources for Plasma Diagnostics
// IEEE Trans. On Plasma Science. 2008, v. 36, N 4,
p. 1536-1546.
Article received 18.10.10
-2 TJ-
.C. , . , . , . , . , . , . ,
. , .
-2 TJ-2 .
(3...7)×1019 -3 (TJ- T-10)
. (
)-
.
-2 TJ-2 Cs+ 100 300 .
-2 TJ-
. , . , . , . , . , . , . ,
. , .
-2 TJ- .
(3...7)×1019 -3 (TJ- T-10)
. ( )
.
-2 TJ-
Cs+ 100 300 .
|