Обратные спиральные волны в пространственно неупорядоченных магнитных средах

Исследуется нелинейная эволюционная система уравнений гидродинамического типа, описывающая трехмерный многоподрешеточный магнетик. Получен явный вид функции плотности энергии для магнитных систем, плотность энергии котоpых инвариантна относительно правых и левых спиновых вращений. Для квадратично-би...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Физика низких температур
Дата:1998
Автор: Иванченко, Е.А.
Формат: Стаття
Мова:Russian
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 1998
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/175487
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Обратные спиральные волны в пространственно неупорядоченных магнитных средах / Е.А. Иванченко // Физика низких температур. — 1998. — Т. 24, № 5. — С. 468-473. — Бібліогр.: 17 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-175487
record_format dspace
spelling Иванченко, Е.А.
2021-02-01T15:21:26Z
2021-02-01T15:21:26Z
1998
Обратные спиральные волны в пространственно неупорядоченных магнитных средах / Е.А. Иванченко // Физика низких температур. — 1998. — Т. 24, № 5. — С. 468-473. — Бібліогр.: 17 назв. — рос.
0132-6414
https://nasplib.isofts.kiev.ua/handle/123456789/175487
PACS: 75.10.-b
Исследуется нелинейная эволюционная система уравнений гидродинамического типа, описывающая трехмерный многоподрешеточный магнетик. Получен явный вид функции плотности энергии для магнитных систем, плотность энергии котоpых инвариантна относительно правых и левых спиновых вращений. Для квадратично-биквадратичной зависимости плотности энергии (в терминах инвариантных функций Картана) в трехмерном случае найдены точные решения для спиновой плотности в виде спиральных волн, а также решения для магнонных полей, индуцирующих такие волны. Предсказаны обратные спиральные волны.
A nonlinear evolution system of hydrodynamic-type equations describing a three-dimensional multisublattice magnet is studied. An explicit expression is obtained for the energy density function of magnetic systems whose energy density is invariant to right- and left-spin rotations. Exact solutions for spin density are obtained in the form of helical waves for quadratic–biquadratic dependence of the energy density (in terms of Cartan’s invariant functions) in three-dimensional case. Solutions are also obtained for magnon fields inducing such waves. The existence of backward helical waves is predicted.
ru
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
Физика низких температур
Низкоразмерные и неупорядоченные системы
Обратные спиральные волны в пространственно неупорядоченных магнитных средах
Backward helical waves in spatially disordered magnetic media
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Обратные спиральные волны в пространственно неупорядоченных магнитных средах
spellingShingle Обратные спиральные волны в пространственно неупорядоченных магнитных средах
Иванченко, Е.А.
Низкоразмерные и неупорядоченные системы
title_short Обратные спиральные волны в пространственно неупорядоченных магнитных средах
title_full Обратные спиральные волны в пространственно неупорядоченных магнитных средах
title_fullStr Обратные спиральные волны в пространственно неупорядоченных магнитных средах
title_full_unstemmed Обратные спиральные волны в пространственно неупорядоченных магнитных средах
title_sort обратные спиральные волны в пространственно неупорядоченных магнитных средах
author Иванченко, Е.А.
author_facet Иванченко, Е.А.
topic Низкоразмерные и неупорядоченные системы
topic_facet Низкоразмерные и неупорядоченные системы
publishDate 1998
language Russian
container_title Физика низких температур
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
format Article
title_alt Backward helical waves in spatially disordered magnetic media
description Исследуется нелинейная эволюционная система уравнений гидродинамического типа, описывающая трехмерный многоподрешеточный магнетик. Получен явный вид функции плотности энергии для магнитных систем, плотность энергии котоpых инвариантна относительно правых и левых спиновых вращений. Для квадратично-биквадратичной зависимости плотности энергии (в терминах инвариантных функций Картана) в трехмерном случае найдены точные решения для спиновой плотности в виде спиральных волн, а также решения для магнонных полей, индуцирующих такие волны. Предсказаны обратные спиральные волны. A nonlinear evolution system of hydrodynamic-type equations describing a three-dimensional multisublattice magnet is studied. An explicit expression is obtained for the energy density function of magnetic systems whose energy density is invariant to right- and left-spin rotations. Exact solutions for spin density are obtained in the form of helical waves for quadratic–biquadratic dependence of the energy density (in terms of Cartan’s invariant functions) in three-dimensional case. Solutions are also obtained for magnon fields inducing such waves. The existence of backward helical waves is predicted.
issn 0132-6414
url https://nasplib.isofts.kiev.ua/handle/123456789/175487
citation_txt Обратные спиральные волны в пространственно неупорядоченных магнитных средах / Е.А. Иванченко // Физика низких температур. — 1998. — Т. 24, № 5. — С. 468-473. — Бібліогр.: 17 назв. — рос.
work_keys_str_mv AT ivančenkoea obratnyespiralʹnyevolnyvprostranstvennoneuporâdočennyhmagnitnyhsredah
AT ivančenkoea backwardhelicalwavesinspatiallydisorderedmagneticmedia
first_indexed 2025-11-25T21:29:33Z
last_indexed 2025-11-25T21:29:33Z
_version_ 1850558050389196800
fulltext ��������� �� ������ ��������������������������� ����!"�#��$�%�&'� (*)"� +�$,&�-�!�.�&�/�0 132547698;:=<?>*@9ACBD4E69F�GH:C<I>KJMLNF�:D< JOAD4EL=@P8Q476R:M@P8;JE>S:=:ML :7>ET=AML549U;VDLRW7>S:9:=<YX[Z\65]^:=B;8;:=<_X`@74N>EVD69X a;b�c�b^d7e�fhg^i�jkg"l�m nkoqp,r sut,owvqxyt z|{�tuou}�~wtqz�{hp ��t����h�u��ou�#x��ws��y���ur�{h��r,��r��us���������tur�~u�����ur�{hr t,����r ��}����y����w� o,r�t,ou�����������y�,����� ��ou�#xy�usu����},v��,���uo, ,�¢¡�r�~������wou£ ���¤�¥§¦�¨�©«ª­¬�® ¯�°,±q¯�²,®u³�´�© µ ¶�· ´�¸�¨�¹¢´�ºu°�· »�¨ ¼�½�¾y½�¿�ÀhÁ�Â�Ã�½ÅÄ�Á Æ�Ç,¾^È^É�ÊÅË ¾uÌ,Í�Æ,Î9ÏkÐ�ÂyÀ Ñuµ,ÀQÒ�ÓuÓ Ô"Õ�·×Ö�Á ÂuÃ�ÇqÊØÁ�Ê�É�Ê�É ¾yÑ�Âq½�Ì,ÆQÒÅÓ^Ë ÊyÌ,¾�ÑuÉqÀÙÒ�Ó�Ó�Ô^Õu· Ú"Ã�ÃyÇ�Ê�Ë�Ä#Êy½�ÃyÀ Ð�ÊuÇ Æ�Ð�ÊyÛ�Ð�¾�À Ü�È,Â,Ç�Î�Í�Æ�Â,Ð�Ð�¾yÀ Ã�Æ�Ãy½�ÊyÝ�¾ÞÄ�É�¾uÈ,Ð ÊuÐ�Æ�Û Õ�Æ�Ë�É�Â,Ë�Æ Ð�¾uÝ�Æ�ßqÊ�Ã�Ì�Â�Õ�Âà½yÆ�Á ¾ Ö Â,Á�Æ�Ã�á�Èq¾�Î�â^¾yÀ7½�É�Êuã Ý�ÊyÉ�Ð�á�ÛEÝ�Ð�Â,Õ�Â,Á�ÂwË#É�Êyä^Ê�½yÂ,ß Ð�á�ÛEÝå¾�Õ�Ð�Êy½�Æ�Ì�·�æ�Â,Ç�Ä�ß,Ê�ÐçÀ#ÈuÐ�á�Û7ÈqÆ,Ë7è�Ä Ð�Ì�Í�Æ�ÆEÁ�Ç�Â,½�Ð�ÂqÃ�½�Æ Ü�Ð�ÊyÉ�Õ�Æ Æ�Ë�Ç,À�Ý�¾uÕ�Ð�Æ�½�Ð�á�ã�Ã�Æ�Ã�½yÊ�Ý�Ö"Á�Ç�Â,½�Ð�ÂqÃ�½�¿9ÜyÐ�Ê�É�Õ�Æ�Æ�Ì Â,½yÂ,µ�á�ã�Æ�Ð�È�¾qÉ Æ�¾uÐ�½�Ð�¾� ½yÐ Â�Ã�Æ�½yÊ�Ç�¿uÐ�Â9Á�É�¾uÈ,á�ãéÆ Ç ÊuÈuá�ãSÃyÁ�Æ�Ð�Â,È,á�ãSÈ,É�¾uâ^ÊyÐ�Æ�Û ·ëê�Ç�ÀSÌ�È,¾yË#É�¾u½�Æ�ßqÐ�Â,¥�Ñ Æ�Ì Èq¾�Ë�É�¾u½�Æ�ß,Ð�ÂqÛíì�¾uÈ,Æ�ÃyÆ�Ý�Â,Ãu½�ÆSÁ�Ç�Â,½yÐ�Â,Ã�½yÆSÜ�Ð�ÊuÉ Õ�Æ�Æïî�È ½�ÊyÉ�Ý Æ�Ð�¾uãRÆ�Ð�È,¾uÉ�Æ ¾,Ð�½�Ð�á�ãïè�Ä#Ð�Ì�Í�Æ�Ûñð�¾uÉ�½�¾uÐ�¾�ò7ÈS½�É�Êuã ÝåÊ�É�Ð�Â,ÝóÃ�Ç�Ä�ß,¾uÊ=Ð�¾uÛ�Ë#ÊyÐ�áô½y ß,Ð�á�ÊCÉ Êuä�ÊuÐ Æ�ÀSË�Ç�À Ã�Á�Æ�Ð�Â,È,Â,ÛëÁ�Ç Â�½�Ð�Â�Ã�½�ÆhÈ'È,ÆqË#Ê�ÃuÁ�Æ�É�¾�Ç�¿uÐ�á�ãëÈ,Â,Ç�Ð�Ö�¾^½�¾uÌ�õ�ÊØÉ�Êyä^Ê�Ð�ÆqÀhË�Ç,À�Ý�¾uÕ�Ð�Â,Ð�Ð�á�ãhÁ�Â,Ç�ÊyÛ�Ö�Æ�Ð,Ë�Ä�Í�Æ�É�Ä Î�âØÆ�ã ½�¾uÌ�Æ�Ê^È,Â,Ç�Ð�á^·�æ�É�Ê�Ë�ÃuÌ ¾uìy¾�Ð�áCÂ,Ñ,É�¾u½�Ð�á�Ê'Ã�Á�Æ�É�¾,Ç�¿,Ð�á�ÊkÈuÂ�Ç Ð�á^· ê�Â,ÃyÇ�© Ë�õ�Ä#öu½�¿uÃ�À÷Ð�Ê�Ç�©øÐ�©«Û�Ð�¾ôÊuÈu Ç�Î�Í�©«Û�Ð�¾ôÃuÆ Ãu½yÊ�Ý�¾ôÉ�©øÈ,Ð�À#Ð�¿ùÕ�© Ë�É�ÂuË�Æ�Ð ¾,Ý�©øß Ð� Õ�Âù½yÆ Á�Ä�Ö9À�Ì ¾?Â�Á�Æ�Ã�Ä�ö ½�µ�Æ�È,Æ�Ý�©«µ�Ð�Æ�ÛSÑ,¾qÕ�¾�½yÂ,Á�© Ë�Õ�É�¾u½�Ì�Â,È,Æ�ÛSÝ�¾uÕ�Ð�Êy½�Æ�Ì�·ûú�Ë�Ê�É�õ�¾uÐ�ÂCÀ È,Ð�Æ�ÛSÈ,Æ�Õ�ÇqÀ Ëíè�Ä#Ð�Ì�Í�©«üûÕÅÄ Ãu½yÆ Ð�ÆSÊuÐ�Ê�É�Õ�©×ühË�Ç�À Ý�¾�Õ�Ð�©ø½�Ð�Æ�ãûÃuÆ Ãu½yÊ�Ý�Ö Ä�Ì� ½yÉ Æ�ãûÕÅÄ�Ã�½yÆ�Ð�¾hÊ�Ð�Ê�É�Õ�©øü�©øÐ�Èu¾,É#©×¾uÐ�½�Ð�¾hÈ © Ë#Ð�Â,ÃyÐ�Â�Á�É�¾,ÈuÆ�ãû½�¾hÇ�©«ÈqÆ�ã�ÃyÁ�©«Ð�Â,ÈqÆ�ã�ÂqÑ,ÊuÉ ½y¾,Ð ¿ · ê�Ç,À?Ì Èq¾�Ë�É�¾u½�Æ�ß,Ð�Âq¥ýÑ�©§Ì�Èu¾uË�É ¾,½yÆ ß�Ð� ü�ì�¾uÇ�Ê�õ�Ð�Â,Ãy½�þEÕÅÄ�Ã�½yÆ�Ð�ÆYÊyÐ�Ê�É�Õ�©øü=î�È_½�Êyµ�Ý�©«Ð�¾uãô©«Ð�È,¾uÉ�©ø¾�Ð�½yÐ�Æ ã?è�Ä#Ð�Ì�Í�©«Û ð�¾uÉ�½�¾uÐ�¾�òíÈó½�É�Æ�È,Æ�Ý�©øÉ�Ð�Â,Ý ÄôÈ,Æ�Á�¾yË#ÌqÄôì�Ð�¾,ÛqË#ÊuÐ�Â?½�Â,ß,Ð�©�É�Â,ìyÈ�ÿ À#ìyÌ Æ\Ë#ÇqÀôÃ�Á�©øÐ�Â,È,Â,üCÕÅÄ Ãu½�Æ�Ð�Æ?ÄôÈuÆ�Õ�Ç�À Ë�© Ã�Á�þøÉ�¾�Ç�¿uÐ�Æ�ãEã�È,Æ�Ç�¿�Ö�¾û½�¾uÌ� õïÉ�Â,ìyÈ�ÿ À#ìyÌ ÆPË#Ç�ÀEÝ�¾,Õ�Ð� Ð�Ð�Æ�ãEÁ Â�Ç�©§È�Ö�À�Ì#©�è�ÂqÉ�Ý�Ä Î�½�¿û½�¾uÌ�©�ã È,Æ�Ç�©­·�æ�Ê�É�Ê�Ë#Ñ,¾uß�Ê�Ð� ì�ÈuÂ�É Â�½�Ð�©�ÃyÁ�Æ�É�¾uÇ�¿�Ð�©åã�È,Æ�Ç�©¢· ��������¬�� ��� �������� ������������� � !#"�$�%�&('�$�)�*�&(',+�-�* *�%.*�-(/�"�%�$�0�1�%32�-�*�* 4�56&�$�-,1 ),5�7 '8)�9�:�5 9�)�9 ;<*�%�= %�"�%�1 $�-�>?-(',%32�*�4�- ;<),=@*�-,'�:�9�:A7 &8+B-8$�5�',-89�/�2�:�-DC?),E84F=G-,H�:�0 I�JA7K&8"�:�*�%�+34�-D&,'@-�9�H�)D: 1 $ALM7N"�$�: :�E,/�2�-8*�:�: &�" :�*�%�+�4�5 +B%3E,O3/�P?1�-�*�:�Q :�&�"�%�H R�E,/�-(',&S0T=(:�"�%3',-(E�)U%D&�"�%�*�'�)�*�*�%3;V*�)�$�/ >?-�*�:�: &8:�;�;W-,'8$�:�: &,%�&,',%�0 * :�0 &,'8),'�:�&,'8:X2�-,&�9�%3=@% $ )�+�*�%�+�-,&8:�0DY,Z37\[�]SL_^`)a%3&�*�%�+3)�*�:�:Ub,'(%�QU=@: "X%�'S-(E�4c+ $ ),O�%�',-dYeJ�]fO�4�Hg"�$�-(1�H %�Ph-8*i=(:�1 $�%�1�:�*�)�;�:�2�-,&89�:�Q "�%�1�5 %�1�7 & "�%�;�%�jhR�k 9�%�'(%�$�%�=@% /�1 ),H�%�&�R &8Cl%�$�;�/�H : $X%X+�),'8Rm1 : *�),;n:�23-,&�9�:�-o/�$�)�+3*�-�* :�0p1�H�0 ;n),=,*�:�'�*�4�5U&�$�-,1q&,%r&8"X%X*X'8)�*�*�%q*�)�$�/ >?-�*�*�%�Qs&8:�;�;tI -('�$�:�-8Q %�'�*�%�&8:X'(-,H R3*X% &�"�:�*�%�+34�5 +�$ )�ju-8*�:�QnL vu:�*�-�Q *�4�-w1X:�*�)B;t:�2�-,&�9�:�-x/X$�)3+3*X-8*�:�0 "�%�H /�2�-�*�4 +yY{z|7~}�]S7�)�/�2�-,'�*�-(H�: *�-�Q�*�%�Q�1 :�*�),;<: 9�:.+D;W-,',%�1�- C_-�*�%3;�-8*X%�H�%�=@:�2�-(&�9�:�5 H )B=�$�)3*�P`:�)�*�%�+ "�$�%�+�-,1�-�* +�Y��|7\��],7c+�=(),;<:�H�R,'(%�*�%�+�%�; C�%�$�;<),H�:�E(;�- � + $ ),O�%�',-�Y���]SL���"�%�;A0�*X/�'�4�-K&�:�&(',-,;n4f%�O�H�),1 )�k�'�$�0X1�%�; : *�',-�$�-(&�*�4�5w&8+B%�Q�&('(+�7�" $X-(1�&�9�),E�)�*�:�k %�1�*�%3=@%�:�E 9�%�'@%�$�4�5�"�%3&�+,0 jh-�*�)K*�)B&('S%30 jh)S0�$�),O�%�'8)�L �_:�*�)�;�:�2�-,&89�:�- "�-�$�-(;�-�* *�4�-�7 %�"�:�&�4�+3)�k?jh:�- *�-�$�)�+3*�%�+B-(&�*�%3-?&(%�&,'@%�0 *�:�-l;<),=(*�-,'8:�9�%X+u&(%�&8"�%�*�'�)�*�*�% * )�$�/�>?-8*�*�%�Q &�:�;�;�-('($�:�-�Q�7w+39�H�k�2�)�kl' + &,-,O�0 "�H�%�'(*�%�&('�R�&�"�:�*�)�� α( � ) � α = � 7��<�����D:V"�)�$�),;�-('�$ "�%�$�0�1 9�)�� %�$�'(%�=@%�*�),H�R�*�/�k ;<),'8$�:� �/¡"�%�+�%�$�%�'8) ¢ αβ(� ) � ¢�£�¢ = Z8��7D* ),O�%�$m&89�%�O3%�9�¤_/�)�&,&(%�* )¥1�H�0 9�%�'(%�$�4�5�:�;W-,-,'�+�:�1 ¦ � α( � ) 7 � β(� ′) § = ¨ αβγ � γ( © )δ(� − � ′) 7 ¦ � α( � ) 7 ¢ βγ( � ′) § = ¨ αγρ ¢ βρ( � )δ( � − � ′) 7 � Z8� ¦ ¢ αβ( � ) 7 ¢ γρ(� ′) § = ª L «�&(&,H�-,1�/�-(; 1 : *�),;n:�9�/ + 1�H�:�* *�%�+B%3H�*�%�+�%3; "�$�-(1�-(H�-�7�9�%�=@1 )�"�$�%3&,'8$�)�*�&,'8+B-8*�*�4�-`*�-,%�1�*�%�$�%�1 *�%�&('�: 1 :�*�),;<:�2�-(&�9�:�5 "�-8$�-,;W-�* *�4�5 ;n),H�4�7 : /�2�'@-(; +�%�E@;�%�Ph* 4�- *�-,H :�*�-8Q�*�4�- +�E�)�:�;�%�1�-�Q�&('�+3:�0 &�" :�*�%�+�4�5 +�%�H * *�) %3&�*�%�+�- :�&�"�%�H R�E@%�+�)�* :�0 9�%�*  �-8"�  :�:�&�"�%�*�'�)�* *�%�= %T*�)�$�/�>?-8*�:�0c¬�­ � J��@I�&�:�;A;<I-,'8$�:�:K&�"�:�*�%�+34�5®+3$�)�jh-�*�:�QA7�%�',*�%�&8:�'(-,H R�*�%¯9�%�',%�$�4�5 %�O3;�-�*�* 4�- +�E()�:�;�%31�-�Q�&,'(+�:�0 0 +�H�0 k�',&@0 :�*�+3)�$�:�)�*�'8*�4�;<:nLq°</�1�-,;±&,2X:X'8),'�R�7�2�',%²"�H�%3'�*�%�&,'8R b�*�-�$�=@: :�0 +�H�0�-(',&S0³C�/�*�9� �:�-8Q´+�-,H :�2�: * � 7 ¢ 7 ∇ µ :�H�:t7 2�'(%�'@%pP¶-�&8)B;W%�-�7·Cl/X*�9� �:�-�Q +�-,H :�2X:�*��37 ¢ 7 ωα ¸ ( ¢ ) = ¹ ⁄º ¨ αβγ ¢ λγ ∇ ¸ ¢ λβ � H�-�+3)S0 C�%�$�;<) » )�$�',)3*�)���¼ ½ ¾�¿{À�¿@Á  Ã�ÄSÅ@Æ8Ä�ÇÉÈ�Ê�Ë�Ì�Ì3Í ε( � 7 � α( � ′) 7 µ ( � ′)) = ε( � α( � ) � ωα ¸ ( ¢ ) 7 ¢ ) 7�� = � ��� 7 � L � [���t)�9 9�)�9 "�H�%�'(*�%3&,'�R b8*�-8$X=�:�: %�O�;�-�*�*�4�5 +�E�)�:�;�%31�-8Q�&,'�+3:�Q : *�+�)3$�:�)3*�'�*�) %�'8*�%3&�:�'S-(H�R�*�% %�1�*�%�$�%31 *�4�5�"�%�+B%�$�%3',%�+ ¦�� α 7 ε § = ª 7 � J�� =@1�- � α = ∫ � � � � α(© ) 7 '(% ε( � 7 ¢ 7 ω ¸ ) = ε( � 7�� µ 7 ω ¸ ) = ε( � _ 7 ω__ ¸ ) L � z�� !�C�%�$�;�/�H�- � z�� �#"�$�%�:�E(+B%�H R3*�)80�%�$�'@%�= %�*�)�H R�*�)S0 ;n),'�$�:�  ) � � _ ≡ ¢ � � ω__α ¸ = Ò ⁄º ¨ αβγ ¢ βλ ∇ ¸ ¢ γλ � " $�)�+3)S0 C_%�$�;<)�L «h&�"�%�H�R,E,/�0 &�9�%3O�9�: ¤�/�),&,&(%�*�) � Z3��7/ $�)�+3*�-�*�:�0 1�+3:�Ph-�*�:X0 1�H�0 "�$�%3&,'�$�)3*�&,'�+�-�*�*�% *�-,/�"�%�$�0�1�%�23-�* *�%�= % ;n),=,*�-('�:�9�) O3-,E /�2�-('�) 1 :�&,&�:�" )� �:�:x;�%�Ph*�%�E,)3"�:�&8),'�Ro+ =(),;<:�H�R,',%�*�%�+B%�Q C_%�$�;�-�¼ �. α = ¦ � α 7�� § = − ∇ � ∂ωα � ε 7 ¢ . αβ = � ¢ αβ � � § = ¢ αρ ¨ ρβγ ∂� γ ε 7 � }�� � = ∫ ��� � ε( � ) �6=(),;<:�H�R,'(%�*�:�)�*�&�:�&,'(-,;t4���'@%�2�9�)?%3E�*�)B2�)�-,'�2�),&('�*�/Xk " $�%�:�E�+�%�1 *�/Xk�"�% +�$�-,;W-�*�:AL � 9�%�O�9�:r¤l/ ),&(&,%�*�)K1�H�0�"�-�$�-,;t-�*�*�4�5 � _α ≡ µ αβ � β 7 ω__α ¸ ≡ ¢ αβ ωβ ¸ :�;W-�kl'`+3:�1¦ � _α( � ) 7 � _β( � ′) § = − ¨ αβγ �_γ( � )δ( � − � ′) 7 ¦ ω__α ¸ ( � ) 7 ω__β � ( � ′) § = ª 7 � ��� ¦ � _α( � ) 7 ω__β ¸ (� ′) § = ¨ ανβ ω__ν ¸ ( � )δ( � −� ′) + δαβ ∇′̧ δ( © − © ′) L ¤�%�b(',%�;W/ b8+B%�H k? �:�%�* *�4�- /�$�)�+3*�-�* :�0 � }�� + "�-�$�-,;t-�*�*�4�5 � _α 7 ω__α ¸ "�$�:�*�:�;<)�k�'�Cl%�$�;W/K/�$�)�+�*�-�*�:�Q&(% &8+80XES0�;<:��q),/�$�-�$ )�� » )�$�'�)�* ) Y���7���]S¼ � _ . α = −∇ ¸ ∂ω__α � ε + ¨ αβγ( � _β ∂�_γ ε + ω__β ¸ ∂ω__γ � ε) 7 ω__ . α ¸ = − ∇ ¸ ∂�_α ε + ¨ αβγ ω__β ¸ ∂ _γ ε 7 � ��� ∇ ¸ ω__α ! − ∇ ! ω__α � = ¨ αβγ ω__β ¸ ω__γ ! L !d/ $�)�+3*�-�*�:�0�5 � ��� ω__α = Ò ⁄ º ¨ αβγ( ¢ . ¢�£ )γβ � "�$�)�+3)S0 Cl%�$�;t)�7c&8+80�E8)�*�*�)S0 &w+3$X-(;�-�*�*�%�Q "�$�%�:�E(+�%�1 *X%XQ"� ω__α ≡ −∂ _α ε LK«hEU&8:�&('S-(;<4d/ $�)�+3*�-8*�:�Q � ���r&,H�-(1�/�-,'�7 2�'(%´H�%�9�)BH R3*X%®&(%�5 $�)3*�0 kl'@&S0 "�H�%3'�*�%3&,'8R b�*�-8$X=(:�: ε : 9�%�;n"�%�*�-�*�'84D:X;n"X/�H R�&�) π ! ¼ ε . = −∇ � ∂�_α ε∂ω__α ¸ ε 7 π . α = − ∇ ¸$#%� � 7 � ��� =@1�- π ! = � _α ω__α ! 7 # !\¸ = − δ ! ¸ (ε − � _α ∂ �_α ε) + ω__α � ∂ω__α � ε � ��� �d',-8*�E@%�$®"�H�%3'�*�%�&,'8:®"X%�'S%X9�)`:�;<"�/�H�R,&�)�L ��:�&,'@-,;n) /�$�)�+3*�-�* :�Qx%�O�j?-,=@%¡"�%�H�%�P?-8*�:�0 � ���:�&(&,H�-,1�%�+�)�H ),&�R�+®$�),O�%3',-�YSZ�Z8],L<!D*�)�&,'@%�0 j?-�Qr$�),O�%3',- "�%3H�/�2�-�*�4f)�* ),H :�'�:�2�-(&�9�:�-hCl%�$�;�/�H�4�7�%�"�:�&�4_+3)�klj`:X- &�" :�$�)�H R�*�4�- +B%3H�*�4 &8"�:�*�%�+�%�Q "�H�%�'�*�%�&,'(: + '�$�-(5�;W-�$�*�%�; )�*�:�ES%�'�$�%�" *�%�;w;�)�=@*�-,'(:�9�-V&d/�2�-(',%3; O�:�9�+�),1 $�),'�:�2�* 4�5 +�9�H ),1�%�+6+6"�H�%3'�*�%�&,'8: b�*�-�$�=@: :tL ¤h$�-(1�&89�)�E,)3*�4 %3O�$�),'�*�4�-w&8"�:�$�),H R3*�4�-w&8"�: *�%�+�4�- +�%�H *�4¶L�! $�),O3%�',- YSZ([�]_+�H ),=($�)�*�P?-8+B%�; "X%�1�5�%31�-�1�H�0 &,H /�2�)S0 9�+3),1 $�)B'(:�2X*X%XQ E()3+�:�&�:�;A%�&,'�: "�H�%3'�*�%�&('�: b�*�-�$�=@: : � ),;t%�$ Cl* 4�Q ;n),=,*�-('�:�9�� *�)�Q�1�-�* 4 &,%�H�:�'@%�*�*�4�- $�-�>?-�* :�0tLw^�-(H :�*�-�Q *�)S0 1 :�*�),;<:�9�) ;<*�%�= %X"X%�1�$�-8>u-(',%32�*�4�5 *�-�9�%�H H :�*�-�)3$�*�4�5 )�*�'8:�Cl-�$�$�%�;<),=@*�-,'8:�9�%�+ & ;�%31�/�H�:�$�%�+3)�*�*�%�Q ;<),=(*�:�'(*�%�Q &('�$�/ 9�',/�$�%�Q²+6"�$�:�&,/�'(&,'�+3:�:d+3*X-8>�*�-,=@% ;<),=(*�:�'(*�%3=@%�"�%�H�0�:�E(/�2�),H�),&8RK+´Y@Z@J�],L &('�� �*)�+3� ,.-�/0)�'01(� '�2314+65�� �*7�8 ��� 9t)B&(&,;W%�'�$�:�; *�-(/�"�%�$�0�1�%�2�-8*�*�4_Q ;<),=(*�-,'8:�9t7 "�H�%�'(*�%�&('�R b8*X-8$�=@: : 9�%�'@%�:�%�= % :�*�+3)�$�:�)�*�',* ) %�'(*�%3&�:�',-(H�R3*�% H�-�+34�5 : "�$�)3+�4�5 &8"�:�*�%�+�4�5 +3$�)3j?-�*�:�QAL�!xb(',%3;�&,H�/�2�),-dC�/ *�9�  :�0±"�H�%3'�*�%�&('�: b�*�-�$�=@: : ε /�1�%�+�H�-('�+�%�$�0�-,' "�-�$�-,%�"�$�-,1�-,H�-8*�*�%�Q &�:�&,'@-,;t-�/�$�)�+3*�-�*�: Q´+�2X),&,'�* 4�5�"�$�%�:�E(+B%�1 *�4�5qY,Z ª ]@¼ ¨ αβγ( � _β ∂ �_γ ε + ω__β ¸ ∂ω__γ � ε) = ª L � Z ª � ;hO�j?-,-`$�-�>?-�*�:�-h&8:�&,'(-,;t4 � Z ª �h:X;t-,-,'`+3:�1 ε = < ( �_α = 7 ω__α >º 7 ω__α ?º 7 ω__α @º � π> 7 π? � π@ ) 7 � Z�Z8� =@1�- < �w" $X%X:XE8+B%3H�R�* )S0TCl/X*�9�  :X0D/X9�),E8)�*�*�4�5�)�$�I =@/�;�-8*X'(%�+�L®¤_%�&�93%�H R�9�/�&8:�&,'@-(;<) � Z ª � :�*�+3)�$�:�)�*�',* ) %�'(*�%3&�:�',-(H�R3*�% =@$�/ "�"�4�"�-8$�-,&('()�*�%�+�%�9#:�*�1�-89�&�)A��7  �-(H�-,&,%�%�O�$�),E8*�% "�-8$X-8Q�'�: 9 &�:�;�;t-,'�$�:�2�-(&�9�:�; "�-8$�-,;�-8*�* 4�;lL ¤?%3&,H�-pb,'(%�=@% 1�H�0 "�$�)�93'�:�23-,&89�:�5 $�)B&(2�-(',%�+ ;�%3P`*X% %�=@$�)�*�:�2�:�'�R,&S0 &(H�-(1�/�k?jh:�; +34�$�),P?-8*�:�-,;U1�H�0³"�H�%�'�*�%�&('(:³b8*�-8$X=(:�:n¼ ε = ε ! + ε B 7 +¯9�%�',%�$�%�; CED4FGD Ç ÃtÄ DHF Ç DGI�J ÆLK M@Æ3N,à JPO N�Ê,Ë{Ì(Ì�Í�Ê J ¿%QSR�ÊUTWV R3X,Ì ε ! = Z [ χ � _α º + ρ[ ω__α ¸º + Z z χ Ò � _α Ï + ρ Ò� ω__α ¸ Ï + �[ π � = � ZS[��� :�E,%3'�$�%�"�*�)S0�: ε � = ρ ºz ( ω__α >º ω__α ?º + ω__α> = ω__α @º + ω__α ? = ω__α @º ) � Z�J�� � )�*�:�ES%�'�$�%�" *�)80 2X),&,'�: b8*�-�$�=@: : � O�-,E /�2�-('�) 1 : ClCl-8$�-�*�  :�),H�R�*�4�5®/�$�)3+�*�-8*�:�Q�&�+,0�E�: ;t-,P?1�/ ω__α> 7 ω__α? 7 ω__α@ �3� χ �d;<),=@*�:�'8*�)S0³+B%3&�" $�: :�;�2�:�+B%�&,'(R � ρ � 9�%�*�&('�)�*�'()���P?-(&,'�9�%3&,'8:���� χ Ò 7 ρ Ò 7 ρ º 7��U�dCl-8*�%�;A-8I *�%�H %�=(:�2�-(&�9�:�-®9�%�*�&,'8)�*�'84�&�+,0�E�:AL 9t),&,&,;n),'�$�:�+3),-,;�/Xk ;t%�1�-,H�R ;�%3P`*�% :�*�'@-8$�"�$�-,'�: $�%�+3)B'(R 9�)39 9�%�*�'8:�*�/�),H�R�* 4�QD"�$�-,1�-(HD&�:�&('@-,;<4d$�)�&�"�$�-,1�-,H -�*�*�4�5 &8:�;�;W-,'8$�:�2�*�4�5�+B%�H�2X9X%�+�L ��� `����� � ��7 ,���� ������� ^`)�Q�1�-(; ',%32�*�4�-p*�-,H�:�*�-�Q�* 4�-p$X-8>¶-8*�:�0 &,'8)�I   :�%�*�)�$�*�%3=@% "�$�%�C�:�H�0�7 '�L -�L 9�%�=@1 ) :�&�9�%3;<4�- C_/�*�9� �:�: � _α( � 7�� ) 7 ω__α ¸ ( � 7 # ) E8)�+�:�&S0�' %�' )3+�'S%�;�%�1�-(H�R3*�%�Q6"�-8$�-,;�-8*�*�%�Q�� � − ¨ # � "�)3$�),;�-,'8$ ¨%X"�$�-,1�-(H�0�-('`+B%�E@;�%�Ph*�4�-h&�9�%�$�%3&,'8:´$�),&8"�$�%�&,'($ )�*X-8*�:�0 +�%�E(;A/ j?-�*�:�Q + &8:�&(',-,;W- �¥+B-89X'(%�$ � &�+,0�E�)�* & * )�"�$�)�+�H�-�*�:�-,;�$�),&8"�$�%�&(',$ )�*�-�*�:�0�+�%3H�*A7�&(;�L *�:�Ph-���L ! '8$�-,5�;W-�$ *�%�; &(H�/�2X),- O3H�),=@%�1 )�$�0 1 : ClCl-8$�-�*�  :�),H�R�*�4�; &8+80XES0�; �s),/ $�-�$�)�� » )�$�'()�*�) &8:�&(',-,;t) /�$ )�+�*�-8*�:�Q � ��� &�+�%�1 :�'@&@0 9 $ ),&,&(;�%�'8$�-�*�*�%�;W/ + $�),O3%�',- Y,ZGz�]x%�1�*�%�;t-�$�*�%3;�/ &(H�/�2X)�k�L�� '@%¥&(H�-,1�/�-,'V:�E6'@%�= %iC?)�9�'�)�7q23',% " $�: E8)�+�:�&�:�;�%�&('(: "�-�$�-,;W-�*�*�4�5 ω__α > 7 ω__α ? 7 ω__α @ %�' � � − ¨ # &�+,0�E�: ∇ ¸ ω__α ! − ∇ � ω__α � = ¨ αβγ ω__β ¸ ω__γ ! � Z�z�� 0�+BH�0 k�'(&S0®=G%�H�%�*�%�;�* 4�;<:A7�'�L -�LW:�*�'@-(=,$�: $X/�-,;<4�;<:A¼ ω__α � = � ?� > ω__α � 7 ω__α � = � @� > ω__α � L � ZS}�� �A-�"�-8$�RK:�&,5�%�1 *�)S0®&�:�&(',-,;n) � ����"�$�:�*�:�;t)�-,'`+�:�1 −̈ ( � _α )′ = − � > (∂ω__α � ε)′ 7 � ZS��� −̈ ( ω__α � )′ = − � � (∂�_α ε)′ + ¨ αβγ ω__β> ∂�_γ ε 7 � ′ ≡ ��� � ( � � − ¨ # ) L «hEh&�:�&('@-,;<4 � Z����?*�-�"�%�&8$X-(1�&,'�+�-�*�*�% &(H�-(1�/�-,'�7�2�',% − ¨_�_α + ρ __ ω__α > = � α 7 ¨_ ≡ ¨ − � >�� � π 7 ρ __ ≡ � >�� ρ + � >      � º ρ � + � � º � ? º + � > º � @ º + � ? = � @ º� > Ï ρ º      ω__α�º 7 � Z(��� � ≡ � º � > º 7 π ≡ � _α ω__α> 7 =@1�- � α � 9�%X*X&('�)�*�'�4f:�*�'S-(=($�: $�%�+3)�*�:�0�L���"�%�;W%�jhR�k /�$ )�+�*�-�* :�Q � Z(���®+r&�:�&,'(-,;W- � Z(����H�-(=,9�% :�&89XH kl2�:�'8R *�-8:�E�+�-,&,'8*�4�-UCl/X*�9� �:�: ω__α > L! W)�;A-('�:�;y'8)�9XP�-�7�2�',% +�-,H�:�2�:�* 4 π : ω__α >º 0�+BH�0 k�'(&S0 C�/ *�9� �:�0�;<: � _α º : � α � _α � &,;�L�¤�$�:�H�%�P?-8*�:�-���L;`9�%�*�2�),',-(H�R3*�%A7 +34l"�%�H *�:�+ ;n),&�>¶'()�O�*�%�- "�$�-(%�O�$�),E(%�+�)�*�:�- ξ = ( � � − ¨ # ) " #%$ − ¨_º χ __ + ρ __ 7 � Z(��� +¯9�%�',%�$�%�;q',-�"�-8$�RK+�%�&8"�$�:�:�;�2�:�+�%�&('�R χ __ $ )�+�*�) Z χ __ ≡ Z χ + Z χ Ò � _α º 7 � Z ��� "�$�:�5�%31 :�; 9aH�: *�-�Q�*�%�Qa&8:�&(',-,;W-¯/�$�)�+3*�-8*�: Q&��Q�H -�$�) 1�H�0�"�$�)�+�%�Q®Cl%�$�;<4 � _α ¼ � � ξ � _α = ¨ αβγ ' β � _γ 7 ' α ≡ � α $ # $ L � [ ª � 9W-�>?-�* :�-�&�:�&(',-,;n4 � [ ª ��:�;W-,-('K+3:X1 � _α(ξ) = ( αβ � _β(ξ ) ) 7 � [|Z8� =@1�-®%�$�',%3=@%�* ),H�R�*�)S0 ;<),'8$�:�  )a"�%�+�%�$�%�'() ( � ( £�* = Z8� $�)�+3*�) ( αβ = +-,/. ξ δαβ + ( Z − +0,1. ξ) ' α ' β − 2-354 ξ ¨ αβγ 6 γ 7 � [�[��� _β(ξ 7 ) � 9�%�*�&,'()�*�'84D:�*�'@-,=($�:�$�%�+3)3*�:�0�L 8w"�%�;t%�j`R�k�*�)�Q�1�-�*�*�%3=@% 1�H�0 "�$�)�+�%�Q C�%�$�;<4 :�-�>h-�*�:X0 � [|Z�� ;W%�Ph*�% %�"�$�-,1�-,H :�'�R &8"�:�*�%�+B/ k "�H�%�'(*�%�&('�R � α = ¢ βα �_β L � [�J � ;`$�',%�=G%�*�),H�R�*�)S0 ;<),'8$�:  �) "�%�+B%�$�%3'�) ¢ αβ/�1�%�+�H�-,'�+�%�$X0�-(' "�-�$�-,%�"�$�-,1�-(H�-8*�*�%�Q &�:�&,'@-,;�- /�$ )�+�*�-�* :�Q ω__α = Z 9 ¨ αβγ ¢ βλ ¢ . γλ 7 � [�z � R;:=< CED4FHD Ç Ã�Ä DSF Ç DGI J Æ3K�MSÆLN,à JPO N�Ê8Ë�Ì,Ì8Í�Ê J ¿%QHR�ÊGTWV ω__α ¸ = � [ ¨ αβγ ¢ βλ ∂ ¸ ¢ γλ 7 � = � 7 � 7 � 7 :�&,%�%3'�*�%�>?-8*�:�0�; � Z(}��BL¤h$�: $�-�>?-8*�: : &8:�&('S-(;<4 � [�z � %3'�*�%�&8:�',-,H�R�*�% ;<),'8$�:  �4 ¢ αβ :�&�"�%�H�R,E,/�-(;D"�)�$�),;t-,'($�:�E�)�  :�k /�= H�),;<: � QXH -�$�)�YSZ(}�],¼ ¢ =      +0,1. ψ +0, . ϕ − ���/2 θ .���� ψ .�� � ϕ − .�� � ψ + ,�. ϕ − � �12 θ +0,�. ψ 2;354 ϕ .�� � θ .�� � ϕ +-,/. θ 2 3 4 ψ +/,�. ϕ + � �12 ψ 2;354 ϕ + ,�. θ +0,�. ψ + ,�. ϕ − .�� � ψ .���� ϕ − .�� � θ +-,/. ϕ .�� � θ . � � ψ .���� θ +0,�. ψ ����2 θ      L � [�}�� ! "�-�$�-(;�-�* *�4�5 ψ 7 θ 7 ϕ &�:�&('@-,;<) � [�z �_"�$�: *�:�;<),-,'�+3:�1 ω__ Ò = − θ . +-,/. ψ − ϕ . 20354 θ . ��� ψ 7 ω__ º = θ . .�� � ψ − ϕ . .�� � θ +-,/. ψ 7 ω__ � = − ψ . − ϕ . +-,�. θ 7 � [���� ω__ Ò � = − θ̧ +0,1. ψ − ϕ ¸ .���� θ .�� � ψ 7 ω__ º � = θ ¸ .�� � ψ − ϕ ¸ .�� � θ + ,�. ψ 7 ω__ � � = − ψ � − ϕ ¸ +-,�. θ 7 ω__α � = � ?� > ω__α > 7 ω__α � = � @� > ω__α > L 9t),&,&,;t%�'8$�:�; &,H�/�2�)�QA7®9�%3=S1 )�� = ( ª 7 ª 7 − Z ) 7�'�L -�L � ��� ª : � _(ξ 7 ) = ( � ¹ 7 ª 7�� � ) L �W%�2�*�%�- $�-�>?-8*�:�- "�-�$�-,%X"�$�-(1�-(H�-8*�*�%�Qq&�:�&('@-,;<4 � [����KH�-,=(9�%r* )�Q�'(:U" $�: ϕ = ϕ 7 = +0,���.�� L�¤u$�:s/�9�),E�)�* *�4�5 /�&(H�%�+�:�0�5 &�:�&('@-,;<) � [�����&?/�2�-,',%3; � Z�����7 � [�Z3��&,%�1�-8$�Ph:�'�:�*�',-(=($�:�$�/�-,;�/Xk"�%�1�&8:�&,'@-(;�/ − θ . +0,1. ψ = −    Z χ __ + � � π�   � Ò +-,/. ξ 7 θ . .���� ψ =    Z χ __ + � � π �   � ¹ .�� � ξ 7 − ψ . = − � � π � � ρ __ −    Z χ __ + � � π �   � � 7 − θ � + ,�. ψ = � � Ò +-,�. ξ 7 θ > .���� ψ = − � � Ò .���� ξ 7 − ψ � = � � ρ __ + � � � 7 � ≡ ¨_ ρ __ L � [���� ¤�%�b(',%�;W/±$�-�>?-�* :�- 1�H�0±Cl/X*�9� �:�: ψ(� 7 # ) +�� � I " $�%�&,'($�)�*�&('�+�-�%32�-�+3:�1�*�%|¼ ψ( � 7 # ) = −    � � ρ __ + � � �   � © + +       Z χ __ + � �π�   � � + � �π � � ρ __    � + ψ 7 7 � [���� =@1�- ψ 7 � 9�%�*�&,'8)�*�'8)�L ¤?-8$X-(%�"�$�-,1�-,H -�*�*�%3&,'8R 1X:�C?C�-�$�-�*� �:�)�H�R3*�%�Q &�:�&,'@-,;n4 � [3���?%�'8*X%�&�:�',-(H�R3*�%®Cl/�* 9� �: : θ( © 7 # ) H�-(=,9�%/�&('�$�)�*�0�-(',&@0 "�$�: $ )�+B-8*�&,'�+�- Cl/X*�9�  :�Q ξ( © 7 # ) = ψ(� � � ) 7�'�L -�L|"�$�:�/�&,H�%�+3:�0�5 −    � � ρ __ + � � �   = � > � Ò 7    � χ __ + � � π �   � � + � � π � � ρ __ = − � Ò ¨ 7 Ò ≡ $ � � $ − ¨_ = χ __ + ρ__ 7 ρ__ ≡ � � ρ __ L � [0��� � %�%�'8*�%�>?-�*�:X0 � [0� � " $�-,1�&,'8)�+BH�0 kl' &,%�O3%�Q "�-8$�-,%�"�$�-,1�-,H�-8*�*�/ k &8:X&(',-(;�/ ),H�=G-,O�$�)�:�23-,&89�:�5 /�$ )�+�*�-�* :�Q %�'8*�%�&�:�',-(H�R�*�%#"�)�$�),;�-('($�)"!_ 7 /�&,H�%�+3:X- &,%X+B;W-,&('�*�%3&,'8:®9X%3',%�$�%�Q®:�;W-,-('K+3:X1 !_º − $ � � $� � !_ − ρ__ χ __ = ª L � J ª � ¤?%3b,'(%�;t/ *�) ;<*�%�P?-(&,'8+B- ��� 7 # ¼ ξ ≠ π9 # � # = = ª 7 ± Z�7 ± [|7%$ $�$ § Cl/�*�9� �:�0 θ( � 7 # ) $�)�+3*�) θ( � 7 # ) = ω # − &�� + θ 7 7 � JAZ8� =@1�- & = � Ò ρ__    $ � � $[ � � ±      � �ºz'� �º + ρ__ χ __      Ò�( =    � 7 ω = � χ __ � Ò + � π � � > ¨_ ρ__ � Ò = ρ__ � Ò � = & º − $ � ��) � � & ⋅ � � = + + � � � > * ⋅ � � º    − $ � � $ � � ρ __ + � Òº + � �º � Ò � > & ⋅ � � º    7 CED4FGD Ç ÃtÄ DHF Ç DGI�J ÆLK M@Æ3N,à JPO N�Ê,Ë{Ì(Ì�Í�Ê J ¿%QSR�ÊUTWV R;:�Ë � JX[�� θ 7 � 9X%�*�&('�)�*�'�)�L 9W-8>¶-�*�:�0 1�HX0¥"�)�$�)B;W-,'8$�%�+ ϕ 7 θ 7 ψ %�" $�-,1�-,H�0 kl' ;n),'�$�:� �/ "�%�+B%X$X%3'�) � [�}���: +w&,%3%�'�+�-,'@&('�+3:�:�& C_%�$�;�/�H�%�Q � [BJ��?"�H�%�'8*�%�&,'(R�&�" :�*�) � α ¼ � Ò = �H� 2;354 ϕ 7 .���� θ + � Ò +0,1. ϕ 7 7 � º = − � � � ��2 ϕ ) .���� θ + � ¹ 2-354 ϕ 7 7 � J�J�� � � = � � +0,�. θ L ^`)�Q�1�-8*�*�4�-d'@%�2�*�4�- $�-8>?-�*�:X0 � J3J��.0 +�HX0�kl'@&S0 &8"�:�$�),H R3*�4�;t:.+�%�H�*�)B;t: &�+�-�9�',%�$�%3;d&�"�: $�),H�: & : E8)�9�%�*�%�; 1 :�&8"�-�$�&�: : ω � J�[��#:p/�1�%�+�H�-(',+�%�$�0 kl' :�&,5�%�1 *�%�Q &8:X&(',-(;�- � }���L��t&,H : � = ( Z�7 ª 7 ª ) : ¨E8),;�-�* :�'�R *�) − ¨ 7 ',% "�%�H�/�2�:�; $�-,E@/�H�R�'()B' $ ),O�%�'�4�Y,ZGz�]SL � C?Cl-89�'�: +�*�%�- ;t)�=@*�:�'�*�%�- "X%�H�- � α 7 C_%�$�;<:�$X/ k_j?-,- &8"�:�$�),H R3*�4�- +B%3H�*�4 &�" :�*�%�+B%�Q "�H�%�'�*�%�&(',:�� α � J�J ��7K%�"�$�-,1�-(H�0�-('S&@0c:�E�+34�$�),P?-8*�:�0 � α ≡ ∂� α ε :´$�)�+3*�% � α =    � χ + � χ ¹ ( � Òº + � �º )  � α + + � �    � � � � ρ __ + ( � Òº + � �º ) � >� º & ⋅⋅ �    × ×    ¢ � α � � ρ __ + � > � Ò � º & ⋅⋅ � � α    L � J�z�� ��� 7�,01@���_��� '0)���� 23/�����'��0'/��/�) '01(� '�231,� ¤_%K%�" $X-(1�-,H�-�* :�k %�O�$�),'�*�4�;<:¯+�%�H *�),;<:¯*�),E84�+�)�kl' +�%�H *�%�+�%�Qf"�$�%� �-(&,&�7_9�%�= 1 )r"�-8$�-�*�%3&ab8*�-8$X=(:�: ;t%�Ph-,' %�&,/�j?-,&('�+�H�0�'(R�&S0 "�%�1 /�= H %�; O3%�H R�>h:�; π 9 9 *�)�"�$�)3+BH -�*�:�kr$�)�&�"�$�%�&�'($�)3*�-�*�:�0�+B%�H�*�4¶L ¤_H�%�'8*X%�&�'(R_"�%�'@%�9�)�b�*�-�$�= :�:�7�&3%�=GH�)�&�*�% � ����73$ )�+3*�) ¸ = ∂�_α ε ∂ω__α� ε L � JX}�� �_H�0 *�)3Q�1�-�*�*�4�5U&8"�:�$�),H�R�* 4�5U&�"�:�*�%�+34�5 +�%�H�* b(',%�' +�-�9�'(%�$®"�$�:�*�:�;<),-('KC�%�$�;�/ � =       ρ__ χ __ + � � ρ__ ω__α>º +    Z χ __   � � �_α º + ( � � π) º   π 7 ª 7 ª    7 � JX��� π = � � � � + ¨_( � Òº + �S�= ) ρ __ L ^K)�Q�1�-,; 9�%�&8:�*�/�& /�=@H�) ;W-,Ph1�/ *�)�"�$�)�+�H�-�*�:�-(; $�)B&8"�$X%�&,'�$�)�*�-�*�:X0 +�%�H *�4 & : *�)�"�$�)�+�H�-�*�:�-(; "�H�%�'(*�%�&('�:®"�%3',%�9�)�b�*�-�$�=@:�: � ¼ +0,1. � = & ⋅ � " & $;$ � $ L � J���� ^�-('($�/�1 *�% "�%�9�),E8),'�R�7 2�',% +�4�$�)�P?-�* :X- � � � � � + ¨_( � Òº + � �º ) ] ¨_ 1�H�0 ¨_ 7 %X"�$�-(1�-(H�-8*�*�%�=@% /�$ )�+�*�-�* :�-,; � J ª ��7<"�%�H %�P`:�',-(H R�*�%AL ��)�9�:�;�%�O�$�),E(%�;l7 Cl%�$�;W/�H�) � J�����"�$�:�*�:�;t)�-,'`+�:�1 +-,�. � = $ � > $ √� > º + � ? = + � @ º × × .�� �       ρ__ χ __ + � � ρ__ ω__α >º + Z χ __ � � �_α º + ( � � π) º   � Ò   L � J���� ¤?%3&�9�%3H�R�9�/�+U$�),&(&,;<),'8$�:�+3)�-,;W%�Q ;�%31�-,H�:f9�%�*�&,'()3*X'8) ;�%3Ph-,' O�4�'8R 9�)39 "X%�H�%�Ph:�'(-,H R�*�%�QA7 '()�9 : %�'($�:�  ),',-,H R3*�%�QA7 "�$ :�5�%31�:�; 9 +�4�+�%�1�/�7 2�',% &�" :�$�)�H R�*�4�- +�%�H�*�4 +#*�-,%�1�*�%�$�%�1 *�%�;w;<),=(*�-,'8:�9X- ;�%3=@/�' $�),&�" $�%�&('�$�)�*�0�'8R,&S0 + * )�"�$�)�+�H�-�*�: :t7 "�$�%3'�: +B%�"�%3H�%3P`*X%�; * )�"�$�)�+�H�-�*�: k "�-�$�-�*�%�&8) b�*�-�$�=@: :tLT^`)�" $�:�;�-8$A7D"�$ : +�&,-(5�"�%3H�%3P`:X'(-,H R3*�4�5 Cl-8*X%�;�-�*�%�H�%�=@:�2�-(&�9�:�5c9�%�*�&,'8)�*�'()�5 &8+80XE�:.C_%�$�;�/�H�) � J����h"�$�: *�:�;<),-('�" $�%�&(',%�Q®+3:X1�¼ +0,1. � = $ � > $ √� > º + � ? º + � @ = .�� � � Ò L � J���� ¤h$�%� �-(&,&�4.&�%�'8$�:� �)B'@-(H�R�*�%�QU=($X/X"�"�%�+�%�QU&�9�%�$�%3&,'8R�k :�&(&,H�-,1�%�+�)3*�4 b89�&�"�-�$�:�;t-�*�'�),H�R�*�% Y8Z���] : ',-(%�$�-,'(:�2�-,&�9�: Y8Z���] "�$ : :�E,/�2�-8*�:�: +�%�H�* +B% +3$�)3jh)�k?j?-�Q�&S0 P`:�1 9�%�&('�:AL ¤_%�1�%�O�*�4�Q b�C�Cl-�9�' ;�%3Ph-,' *�),O�H kl1X)B'(R�&S0 + *�-,/�"�%�$�0�1�%�23-�* *�4�5 ;<),=(*�-,'8:�9�),5<L � ,���)������������ ¤?%3b,'8)�"�*�%�-�$�-�>?-�* :X-®&8:�&,'(-,;D/ $�)�+�*�-�*�:�Q "X-8$�+�%�=@% "�%�$�0�1 9�) � 5�)�$�)�9�',-8$�* )S0 %3&,%�O�-8*�*�%�&,'8R =(),;<:�H�R,'(%�*�%�+�%�= % Cl%�$�;t)BH :�E@;<)�L ¤�%�b(',%3;�/ * ) "�$�%3;�-,Ph/�'(%�2X*X%�;fb,'8)�"�-®+�:�1q$�-�>?-8*�:�0 � [|ZB�� �-,H�:�9�%3;%�"�$�-,1�-,H�:�H +34�O�%�$ "�)�$�),;t-,'($�:�E�)�  :�: � [�}���7 2�',% /�" $X%�&,'(:�H�% :�*�',-(=,$�:�$�%�+3)�*�:�-�L ¤h$�:�+�-,1�-�*�*�4�-D'@%�2�*�4�-T*�-(H�: *�-�Q�*�4�-T$�-�>?-�* :�0·+ $�)B&(&,;W%�'�$�-8*�*�%�QD;W%�1�-,H : 0 +�H�0 k�',&@0�7?&(%�=@H )�&�*�% � J�J���7&�" :�$�)�H R�*�4�;<:±+�%�H�*�)�;t:nL�!<9�H�),1#O�:�9�+3)�1�$�),'8:X2X*�4�5 &,H�),=@)�-,;t4�5 +´"�H %�'8*X%�&,'�:®b�*�-�$�=(:�: � Z([��`+B%3E�$�),&('�),-,'K&$�%�&,'(%�; *�)�2�)�H R�*�%�=G% $�),&8"�$�-,1�-,H�-8*�:X0 "�H�%3'�*�%�&('�: &�" :�*�)K+K&�:�&,'(-,;�-�L W)�+3:�&8:X;t%�&,'(RK%�'�9X%�*�&('()�*�'�4f&8+80XE�: �d&,%�1�-8$XPu:�',&@0 '@%�H R�9�%²+ 2X),&,',%3',- ω &�"�:�$�)�H�R3*�%�Q +�%�H *�4 &�"�:�*�%�+�%�Q¡"�H�%�'8*X%�&,'(: � J�[ ��7T)±+B%�H *�%�+�%�Q +�-�9�',%�$ & *�-´E8)�+�:�&�:�'®%�'®b(',%�Q 93%�*�&,'�)�*�'�4¶L�¤�-�$�-�*�%�& R;:LQ CED4FHD Ç Ã�Ä DSF Ç DGI J Æ3K�MSÆLN,à JPO N�Ê8Ë�Ì,Ì8Í�Ê J ¿%QHR�ÊGTWV b8*�-8$X=(:�: ;�%3P¶-(' %�&(/�j¶-(&,'(+BH�0�'�R,&@0 "�%�1 /�=@H�%�; O�%�H�R�>�:�; π [d9 *�)3"�$�)�+�H�-�*�:�k�$�),&8"�$�%�&,'($ )�*X-8*�:�0 &8"�:�$�),H R3*�%�Q�&�"�:�*�%�+�%�Q®+�%�H *�4¶L ��+�',%�$c"�$�:�E(* ),',-,H�-8* �¶L®!?L®¤�-,H�-,'(;<:�*�&�9�%3;�/yE�) &('�:�;A/�H :�$�/�k?jh:�-�%3O�&(/�Ph1�-�* :�0tL 9t),O�%�'8)�"�%�1�1�-�$�P`)�*�)��a%�*�1�%3;UCl/X*�1 ),;�-�*�'8),H�R�*�4�5 :�&,&(H�-(1�%�+�)�*�: Q ��9�$ )�:�*�4 � " $�%�-�9�'�[�L z��?J�������L � 7���)�'��u�B����� ! Cl%�$�;�/�H - ω__α>º = � α = + [ ¨_ � α �_α + ¨_ = �_α º ρ __ º � ¤¯Z3� &�"�%�;�%�j¶R3kD/�&,H %�+3:X0 &,%�+�;W-,&,'8*�%3&,'8: ¨_º − �e¨_ − ρ__ χ __ = ª � ¤u[�� :�&�9�H kl2�:�; ρ__ L !#$�-(E,/�H�R,'�),',-T"�%�H�/�2X:�;d/�$ )�+�*�-8*�:�- >h-,&('S%XQ³&(',-8"X-8*�: ¨_ − J �{¨_ + ( J � º − � Ò ) ¨_� + ( 9 � � Ò − � � ) ¨_� − −      � º � ¹ + � Òº + � �º � �º �      ¨_ º + [ � �W¨_ − � º � = ª 7 � ¤�J�� � ≡ " � � "� � 7 � Ò ≡ � º ρ χ __ 7 � ≡ � �º χ __ � Y � Ï ρ Ò + ( � > º � ? º + � > = � @ º + � � = � @ º )ρ º ]¶L ��$�)3+�*�-�* :�- >?-,&,'(%�Q &,',-8"�-�*�: � ¤_J�� � " $�:%�=@$�)�*�:�2�-�*�:�: � Ò = ± � � �?"�$�-(1�&('()�+3:�;�%�+K+3:�1�- ( ¨_º − �e¨_ − � Ò )( ¨_º − �e¨_ − � º )( ¨_º − �M¨_ − � � ) = ª 7 � ¤�z��=@1�- � Ò 7 � º 7 � � � 9�%�$�*�:´9�/�OX:X2�-,&�9�%3=@% /�$�)3+�*�-8*�:�0 � � − � Ò � º − 9���� − � � º = � 7 � ≡ ρ__ χ __ L � ¤u}�� ��)�9�:�;r%3O�$�),E,%�;�7 1�%�9�),E8)�*�%�7�23',% � E�)�+3:�&8:�'?%�' � α � _α 7 � _α = "�$�:´/�&(H�%X+�:�: � Ò = ± � � :®"�%�b,'(%�;�/ ω__α >º 7 π ',%�P?- E�)�+3:�&@0�'�%�' � α � _α 7 � _α = 7.'�L -�L6*�-�E�)�+3:�&@0�'�%�' )�+�',%�;W%�1�-,H R3*X%XQa"�-8$�-,;�-8*�*�%�Q � � − ¨ # L ;h'@;�-,'8:X;_7W2�',%%�=@$�)3*�:�23-�*�:�- � ¹ = ± � � +�4�E8+�)�*�%x/�2�-,',%3; '@%�H R�9�% O�:�9�+�),1 $�),'�:�2�* 4�5#&,H )�=@),-,;<4�5<7 "�$�%�"�%�$�  :�%�*�),H R3*�4�5 ρ Ò 7 ρº 7 O�-(E¶/�2�-,'8)�9�%�'@%�$�4�5 � = � Ò L Òu·��Ø·��Ø·���º,±uº ª«»��,º,° Ö���� ? � !�� �! �" Ö�Ò"î�ÒÅÓ 7 ò�·º ·�#�·�##·%$�º,ª�&�'¢¶¢ºu² ¯,Ö)(+*-,/.�,10 !�2�3/4�5 ,� 76#ÖåÒ Ï�îuÒ�Ó Òwò�·� ·8��·89�·;:�¨�ªøµ ¯�¹�©ø²Q¨�²�&`��·���·<: º�¸�¯�²�� ¯�¹¢± Ö%�=� ? � ��> 3 .�·� @?�?�Ö<AuÓ�Aî�ÒÅÓ Ó�ò�·Ï�·���·;9�·;:�¨,ª«µ�¯�¹�© ²E¨�²�&CBé·�DE·��,¨7'�ª×º/EkÖ �=� ? � �;> 3 . ·�FW " Ö º Ò Ïî�ÒÅÓ ÔuÔ�ò�· ·GB�·)Dç·8��¨7'�ª«º�EkÖ �H� ? � ��> 3 . ·GF � Ö�ÒuÒ�ÔyÏ�îuÒ�Ó/A 7 ò�· ·^ê^·JI�·JI�ÂuÇ�Ì,ÂuÈ#ÖLK�·MKØ·LN9Ê�Ç�½ÅÄwã�Æ�Ð ÖMO ���u������r,£E��nQP�P�P%R��P���� ru£���r,� ·GS/S�Ö�ÒÅÏ�A,Ô î�ÒÅÓ�A 7 òu·Ô�·GK�·UTÙ·VK�ÐuË�É Ê�ÊyÈ ÖWI�·�Ú�·GXû¾yÉ ßuÊ�Ð�Ì,Â�Ö �LYhn [Z ��Ö � Óëî�ÒÅÓ�A 7 òu·A�·W9y·�¤�·W\^]¢® ¨uª«º/'¢¸�© ²-'­´#©«©�¨y²-&_$Ø·�¤�·G`�º,ª«ºu° ©ø´�Ö�a 4�4 � ��� ? � ·� �Ö Ôî�ÒÅÓ�A 7 ò�·Ó�·bX;·dc�·Sð�ÂuÈu¾�Ç�Ê�È�Ã�ÌqÆ Û�ÖS¼�·eI�·�æ�Ê�Ç�Ê�½�Ý�Æ ÐqÃ�Ì,Æ,Û�ÖeK�·ef^·g9Æ ä�Ì,Æ�Ð Ö��MY1hiZ " Ö º Ï î�ÒÅÓ,Ó�Òuò�·Ò 7 ·<XE·<cS·�ð�ÂuÈu¾�Ç�Ê�ÈuÃ�Ì,Æ�Û Ö�¼�·<I�·�æ�ÊyÇ,Ê�½�Ý Æ Ð�Ã�Ì,Æ�Û�Ö8j)k Y �� ��Ö Óî�ÒÅÓ,ÓuÏ�ò�· Ò,Òu·Wl�·GK�·�Ú�Èu¾�Ð�ß�ÊyÐ,Ì,Â�Ö Yhn j ��Ö�Ò Aëî�Ò�ÓuÓ,Ï�ò�·Ò º ·W��·B�Ø·G9�°,¨u²,ºq°�Ö�m , � !on m 5 � 5�3 0<, 2�2 * 4 ·�Z�S�Ö�Ï � Ô î�ÒÅÓ�A 7 ò�·Ò � ·pK�·pf^·;¼�Ä,Ì,Ãy½�¾�Ð�Ã�Ì,Æ Û Örq�·sKØ·QÚ È�¾yÐ ÂuÈ�Ö1hut j Y± ��/?�ÖûÓ�Ò�Ï î�ÒÅÓ,Ó ò�·Ò�Ï�·Wl�·GK�·�Ú�Èu¾�Ð�ß�ÊyÐ,Ì,Â�Ö�Yhn j Z�Ö�A � 7 î�Ò�ÓuÓ Ôqò�·Ò ·Jv�·JvuÂuÇ�¿yË Ã�½�Ê�Û Ð�ÖMw v ou����r�~������qoy£7¡���� o tqr �uo ÖJx ¾�Ä Ì,¾�ÖJXûÂuÃ�Ì,Èu¾ î�ÒÅÓ Ô ò�·Ò ·���·�9 �-��¯�¶y'¢ºu²h¨y²-&!�Ø·���¸�©«ª§ª�© µ�'�Ö £ 3 � � * � [6�ÖGA�Ò^îuÒ�Ó Ôqò�·Ò�Ô�·WD;·3� ·Wz ºu² ±u»�¯�¶¢¥{:^© ±q± © ²-'yÖ�|��V} � * !�ns~�3[� � ·�Z� ,Ö�Ï Ò�Ô î�ÒÅÓ A�òu· �����%���!�������V��� � �G�;���!�����%�p� ���W���W��� �;� ���8� �G�8�o�8���{��� � �<���V���y� � � ����� � ���W���;� �<���������H�<�G� �_²�º�²�ª§©ø²,¯�¨y¹Q¯�°,º,ª«»�¶�© ºu²e'�®�'¢¶¢¯�¦ùº���¸w®-& ¹­º�&q® ²�¨�¦^©   ¶�®,µ�¯H¯@¡�»�¨�¶�© ºu²�'�&�¯@'y �¹�©¢� ©«²q±D¨E¶­¸,¹�¯�¯�¥o&#© ¦�¯�²�'�© º,²,¨,ª"¦�»#ªø¥ ¶�© '­»-� ª×¨y¶¢¶¢©£ �¯'¦Ø¨u±u²�¯�¶ ©¢'^© ² °,¯@'­¶�© ±,¨�¶­¯@& ·���²û¯[¤,µ�ª§©¢ �© ¶^�׺u¹¢¦ �׺u¹�¶ý¸�¯'¯�² ¯�¹¢±w®�&�¯�²-'�© ¶ ®¥�×»,²� �¶�© º,²r�׺�¹�¦�¨�±u²�¯�¶�©  !'�®�'¢¶¢¯�¦L' E�© ¶¢¸�¶�¸�¯Ø¯y²,¯�¹­±u®¦&�¯�²�'�© ¶�®�© ²�°,¨�¹�©ø¨�²�¶8E�©«¶�¸�¹­¯['¢µ,¯7 �¶�¶�ºh¶ý¸�¯ ¹�© ±q¸ ¶�¨u²�&Qª«¯[�×¶M'¢µ#© ²ë¹¢º,¶�¨u¶¢©«ºu²-'�© '�º/� ¶¢¨u© ² ¯@&�·W§ ºu¹�¨!¡ »q¨�&q¥ ¹¢¨y¶�©  �¥o� ©£¡q» ¨7& ¹¢¨u¶¢©£ �&�¯�µ�¯�²-&�¯�²- �¯Eº���¯�²�¯�¹¢±u®e& ¯�²�'�© ¶�®íî�©ø² ¶¢¯�¹­¦¨''º��^©«²q°,¨u¹�© ¨�²�¶_��¨y¹¢¶¢¨y² ÿ '¦�×»�²- �¶�© ºu²�'�ò�© ²E¶�¸ ¯ë¶¢¸ ¹­¯�¯�¥ &�© ¦�¯�²-'�© ºu²�¨�ª� �¨['¢¯P¶¢¸,¯Q¯@¤�¨[ �¶©'¢º�ª«»�¶ ©øºu²-'h¨y¹¢¯r&�¯�¹�© °,¯[&7©ø² ¶¢¸q¯��׺u¹¢¦ïºª�M'¢µ�© ¹¢¨,ª�E�¨�°,¯@'!�§ºu¹J'­µ#© ²C&,¯�²�'�©«¶×® ·�«�¸�¯©'¢º,ª§»q¥ ¶�© ºu²�'�º��h¦�¨y±,²,º,²¬��© ¯�ª£&�'�¶¢º7© ²�&�»- �¯r'­¶¢¨�¶�© ºu²�¨�¹­®7µ ¹­º-��©«ª«¯ E�¨�°,¯@'¬�׺u¹­'¢µ�© ²®& ¯�²�'�© ¶�®ï¨�¹Å¯¯�׺�»�²�&ñ¶­º�º�·p��¨7 �´-E�¨�¹�& ¸�¯�ª§©  y¨�ª%E�¨�°,¯@'�¨y¹¢¯�µ ¹¢¯@&�©  �¶¢¯@&�· CED4FGD Ç ÃtÄ DHF Ç DGI�J ÆLK M@Æ3N,à JPO N�Ê,Ë{Ì(Ì�Í�Ê J ¿%QSR�ÊUTWV R;:�°