Hydrodynamic theory of magnets with strong exchange interaction
A microscopic approach to the description of multisublattice magnets with strong exchange interaction is proposed. Low-frequency dynamics of such magnets is characterized by the appearance of an additional dynamical variable, i.e., the orthogonal matrix of rotation, which corresponds to the total br...
Gespeichert in:
| Veröffentlicht in: | Физика низких температур |
|---|---|
| Datum: | 1997 |
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
1997
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/175709 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Hydrodynamic theory of magnets with strong exchange interaction / A.A. Isayev, M.Yu. Kovalevsky, and S.V. Peletminsky // Физика низких температур. — 1997. — Т. 23, № 7. — С. 696-711. — Бібліогр.: 20 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-175709 |
|---|---|
| record_format |
dspace |
| spelling |
Isayev, A. A. Kovalevsky, M.Yu. Peletminsky, S.V. 2021-02-02T17:07:00Z 2021-02-02T17:07:00Z 1997 Hydrodynamic theory of magnets with strong exchange interaction / A.A. Isayev, M.Yu. Kovalevsky, and S.V. Peletminsky // Физика низких температур. — 1997. — Т. 23, № 7. — С. 696-711. — Бібліогр.: 20 назв. — англ. 0132-6414 PACS: 75.10.-b, 75.30.Et, 05.30.Ch https://nasplib.isofts.kiev.ua/handle/123456789/175709 A microscopic approach to the description of multisublattice magnets with strong exchange interaction is proposed. Low-frequency dynamics of such magnets is characterized by the appearance of an additional dynamical variable, i.e., the orthogonal matrix of rotation, which corresponds to the total breaking of spin invariance [broken SO(3) symmetry]. The structure of the source that breaks the symmetry of the equilibrium Gibbs distribution is established. The quasiaverage representation is generalized to weakly anisotropic, locally equilibrium states. The thermodynamics of such states is constructed. The method of reduced description is formulated and in its framework the hydrodynamic equations for the density of total spin and the matrix of rotation are obtained. The spectra of spin waves are found and the number of Goldstone and activation modes is determined. Two-sublattice ferrimagnet is considered as a special case of the magnet with broken SO(3) symmetry, which corresponds to the special dependence of thermodynamic functions from the matrix of rotation. M. Yu. K. and S V. P. wish to thank the Faculty of Mathematics and Natural Philosophy of Rostock University for hospitality and for partial financial support of this study. en Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України Физика низких температур Низкотемпеpатуpный магнетизм Hydrodynamic theory of magnets with strong exchange interaction Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Hydrodynamic theory of magnets with strong exchange interaction |
| spellingShingle |
Hydrodynamic theory of magnets with strong exchange interaction Isayev, A. A. Kovalevsky, M.Yu. Peletminsky, S.V. Низкотемпеpатуpный магнетизм |
| title_short |
Hydrodynamic theory of magnets with strong exchange interaction |
| title_full |
Hydrodynamic theory of magnets with strong exchange interaction |
| title_fullStr |
Hydrodynamic theory of magnets with strong exchange interaction |
| title_full_unstemmed |
Hydrodynamic theory of magnets with strong exchange interaction |
| title_sort |
hydrodynamic theory of magnets with strong exchange interaction |
| author |
Isayev, A. A. Kovalevsky, M.Yu. Peletminsky, S.V. |
| author_facet |
Isayev, A. A. Kovalevsky, M.Yu. Peletminsky, S.V. |
| topic |
Низкотемпеpатуpный магнетизм |
| topic_facet |
Низкотемпеpатуpный магнетизм |
| publishDate |
1997 |
| language |
English |
| container_title |
Физика низких температур |
| publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
| format |
Article |
| description |
A microscopic approach to the description of multisublattice magnets with strong exchange interaction is proposed. Low-frequency dynamics of such magnets is characterized by the appearance of an additional dynamical variable, i.e., the orthogonal matrix of rotation, which corresponds to the total breaking of spin invariance [broken SO(3) symmetry]. The structure of the source that breaks the symmetry of the equilibrium Gibbs distribution is established. The quasiaverage representation is generalized to weakly anisotropic, locally equilibrium states. The thermodynamics of such states is constructed. The method of reduced description is formulated and in its framework the hydrodynamic equations for the density of total spin and the matrix of rotation are obtained. The spectra of spin waves are found and the number of Goldstone and activation modes is determined. Two-sublattice ferrimagnet is considered as a special case of the magnet with broken SO(3) symmetry, which corresponds to the special dependence of thermodynamic functions from the matrix of rotation.
|
| issn |
0132-6414 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/175709 |
| citation_txt |
Hydrodynamic theory of magnets with strong exchange interaction / A.A. Isayev, M.Yu. Kovalevsky, and S.V. Peletminsky // Физика низких температур. — 1997. — Т. 23, № 7. — С. 696-711. — Бібліогр.: 20 назв. — англ. |
| work_keys_str_mv |
AT isayevaa hydrodynamictheoryofmagnetswithstrongexchangeinteraction AT kovalevskymyu hydrodynamictheoryofmagnetswithstrongexchangeinteraction AT peletminskysv hydrodynamictheoryofmagnetswithstrongexchangeinteraction |
| first_indexed |
2025-12-07T13:28:47Z |
| last_indexed |
2025-12-07T13:28:47Z |
| _version_ |
1850856311318642688 |