Spin splitting of surface states in HgTe quantum wells

We report on beating appearance in Shubnikov–de Haas oscillations in conduction band of 18–22 nm HgTe quantum wells under applied top-gate voltage. Analysis of the beatings reveals two electron concentrations at the Fermi level arising due to Rashba-like spin splitting of the first conduction subb...

Full description

Saved in:
Bibliographic Details
Published in:Физика низких температур
Date:2019
Main Authors: Dobretsova, A.A., Kvon, Z.D., Krishtopenko, S.S., Mikhailov, N.N., Dvoretsky, S.A.
Format: Article
Language:Russian
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2019
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/175794
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Spin splitting of surface states in HgTe quantum wells / A.A. Dobretsova, Z.D. Kvon, S.S. Krishtopenko, N.N. Mikhailov, S.A. Dvoretsky // Физика низких температур. — 2019. — Т. 45, № 2. — С. 185-191. — Бібліогр.: 34 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-175794
record_format dspace
spelling Dobretsova, A.A.
Kvon, Z.D.
Krishtopenko, S.S.
Mikhailov, N.N.
Dvoretsky, S.A.
2021-02-02T19:32:27Z
2021-02-02T19:32:27Z
2019
Spin splitting of surface states in HgTe quantum wells / A.A. Dobretsova, Z.D. Kvon, S.S. Krishtopenko, N.N. Mikhailov, S.A. Dvoretsky // Физика низких температур. — 2019. — Т. 45, № 2. — С. 185-191. — Бібліогр.: 34 назв. — рос.
0132-6414
https://nasplib.isofts.kiev.ua/handle/123456789/175794
We report on beating appearance in Shubnikov–de Haas oscillations in conduction band of 18–22 nm HgTe quantum wells under applied top-gate voltage. Analysis of the beatings reveals two electron concentrations at the Fermi level arising due to Rashba-like spin splitting of the first conduction subband H₁. The difference ΔNs in two concentrations as a function of the gate voltage is qualitatively explained by a proposed toy electrostatic model involving the surface states localized at quantum well interfaces. Experimental values of ΔNs are also in a good quantitative agreement with self-consistent calculations of Poisson and Schrödinger equations with eightband k p⋅ Hamiltonian. Our results clearly demonstrate that the large spin splitting of the first conduction subband is caused by surface nature of H₁ states hybridized with the heavy-hole band.
Виявлено появу биття в осциляціях Шубнікова–де Гааза в зоні провідності HgTe квантової ями завтовшки 18–22 нм при прикладенні верхньої затворної напруги. Аналіз биття вказує на два типи електронів з різними концентраціями на рівні Фермі, що виникають внаслідок рашба-подібного спінового розщеплення першої підзони провідності H₁. Різниця двох концентрацій ΔNs як функція затворної напруги якісно пояснюється запропонованою спрощеною електростатичною моделлю поверхневих станів, локалізованих на гетерограниці квантових ям. Експериментальні значення ΔNs також знаходяться в хорошій кількісній згоді з самоузгодженими розрахунками рівнянь Пуассона та Шредінгера для восьмизонного k · p гамільтоніана. Отримані результати наочно демонструють, що велике спінове розщеплення першої підзони провідності обумовлено поверхневою природою станів H₁, гібридизованих із зоною важких дірок.
Обнаружено появление биений в осцилляциях Шубникова–де Гааза в зоне проводимости HgTe квантовой ямы толщиной 18–22 нм при приложении верхнего затворного напряжения. Анализ биений указывает на два типа электронов с различными концентрациями на уровне Ферми, возникающих вследствие рашба-подобного спинового расщепления первой подзоны проводимости H₁. Разность двух концентраций ΔNs как функция затворного напряжения качественно объясняется предложенной упрощенной электростатической моделью поверхностных состояний, локализованных на гетерограницах квантовых ям. Экспериментальные значения ΔNs также находятся в хорошем количественном согласии с самосогласованными расчетами уравнений Пуассона и Шредингера для восьмизонного k · p гамильтониана. Полученные результаты наглядно демонстрируют, что большое спиновое расщепление первой подзоны проводимости обусловлено поверхностной природой состояний H₁, гибридизованных с зоной тяжелых дырок
This work was supported by the Russian Foundation for Basic Research (projects no. 17-52-14007) and Government of Novosibirsk region (projects no. 17-42-543336).
ru
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
Физика низких температур
Спеціальний випуск. «XXII Уральська міжнародна зимова школа з фізики напівпровідників» (20–23 лютого, 2018)
Spin splitting of surface states in HgTe quantum wells
Спінове розщеплення поверхневих станів в квантових ямах HgTe
Спиновое расщепление поверхностных состояний в квантовых ямах HgTe
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Spin splitting of surface states in HgTe quantum wells
spellingShingle Spin splitting of surface states in HgTe quantum wells
Dobretsova, A.A.
Kvon, Z.D.
Krishtopenko, S.S.
Mikhailov, N.N.
Dvoretsky, S.A.
Спеціальний випуск. «XXII Уральська міжнародна зимова школа з фізики напівпровідників» (20–23 лютого, 2018)
title_short Spin splitting of surface states in HgTe quantum wells
title_full Spin splitting of surface states in HgTe quantum wells
title_fullStr Spin splitting of surface states in HgTe quantum wells
title_full_unstemmed Spin splitting of surface states in HgTe quantum wells
title_sort spin splitting of surface states in hgte quantum wells
author Dobretsova, A.A.
Kvon, Z.D.
Krishtopenko, S.S.
Mikhailov, N.N.
Dvoretsky, S.A.
author_facet Dobretsova, A.A.
Kvon, Z.D.
Krishtopenko, S.S.
Mikhailov, N.N.
Dvoretsky, S.A.
topic Спеціальний випуск. «XXII Уральська міжнародна зимова школа з фізики напівпровідників» (20–23 лютого, 2018)
topic_facet Спеціальний випуск. «XXII Уральська міжнародна зимова школа з фізики напівпровідників» (20–23 лютого, 2018)
publishDate 2019
language Russian
container_title Физика низких температур
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
format Article
title_alt Спінове розщеплення поверхневих станів в квантових ямах HgTe
Спиновое расщепление поверхностных состояний в квантовых ямах HgTe
description We report on beating appearance in Shubnikov–de Haas oscillations in conduction band of 18–22 nm HgTe quantum wells under applied top-gate voltage. Analysis of the beatings reveals two electron concentrations at the Fermi level arising due to Rashba-like spin splitting of the first conduction subband H₁. The difference ΔNs in two concentrations as a function of the gate voltage is qualitatively explained by a proposed toy electrostatic model involving the surface states localized at quantum well interfaces. Experimental values of ΔNs are also in a good quantitative agreement with self-consistent calculations of Poisson and Schrödinger equations with eightband k p⋅ Hamiltonian. Our results clearly demonstrate that the large spin splitting of the first conduction subband is caused by surface nature of H₁ states hybridized with the heavy-hole band. Виявлено появу биття в осциляціях Шубнікова–де Гааза в зоні провідності HgTe квантової ями завтовшки 18–22 нм при прикладенні верхньої затворної напруги. Аналіз биття вказує на два типи електронів з різними концентраціями на рівні Фермі, що виникають внаслідок рашба-подібного спінового розщеплення першої підзони провідності H₁. Різниця двох концентрацій ΔNs як функція затворної напруги якісно пояснюється запропонованою спрощеною електростатичною моделлю поверхневих станів, локалізованих на гетерограниці квантових ям. Експериментальні значення ΔNs також знаходяться в хорошій кількісній згоді з самоузгодженими розрахунками рівнянь Пуассона та Шредінгера для восьмизонного k · p гамільтоніана. Отримані результати наочно демонструють, що велике спінове розщеплення першої підзони провідності обумовлено поверхневою природою станів H₁, гібридизованих із зоною важких дірок. Обнаружено появление биений в осцилляциях Шубникова–де Гааза в зоне проводимости HgTe квантовой ямы толщиной 18–22 нм при приложении верхнего затворного напряжения. Анализ биений указывает на два типа электронов с различными концентрациями на уровне Ферми, возникающих вследствие рашба-подобного спинового расщепления первой подзоны проводимости H₁. Разность двух концентраций ΔNs как функция затворного напряжения качественно объясняется предложенной упрощенной электростатической моделью поверхностных состояний, локализованных на гетерограницах квантовых ям. Экспериментальные значения ΔNs также находятся в хорошем количественном согласии с самосогласованными расчетами уравнений Пуассона и Шредингера для восьмизонного k · p гамильтониана. Полученные результаты наглядно демонстрируют, что большое спиновое расщепление первой подзоны проводимости обусловлено поверхностной природой состояний H₁, гибридизованных с зоной тяжелых дырок
issn 0132-6414
url https://nasplib.isofts.kiev.ua/handle/123456789/175794
citation_txt Spin splitting of surface states in HgTe quantum wells / A.A. Dobretsova, Z.D. Kvon, S.S. Krishtopenko, N.N. Mikhailov, S.A. Dvoretsky // Физика низких температур. — 2019. — Т. 45, № 2. — С. 185-191. — Бібліогр.: 34 назв. — рос.
work_keys_str_mv AT dobretsovaaa spinsplittingofsurfacestatesinhgtequantumwells
AT kvonzd spinsplittingofsurfacestatesinhgtequantumwells
AT krishtopenkoss spinsplittingofsurfacestatesinhgtequantumwells
AT mikhailovnn spinsplittingofsurfacestatesinhgtequantumwells
AT dvoretskysa spinsplittingofsurfacestatesinhgtequantumwells
AT dobretsovaaa spínoverozŝeplennâpoverhnevihstanívvkvantovihâmahhgte
AT kvonzd spínoverozŝeplennâpoverhnevihstanívvkvantovihâmahhgte
AT krishtopenkoss spínoverozŝeplennâpoverhnevihstanívvkvantovihâmahhgte
AT mikhailovnn spínoverozŝeplennâpoverhnevihstanívvkvantovihâmahhgte
AT dvoretskysa spínoverozŝeplennâpoverhnevihstanívvkvantovihâmahhgte
AT dobretsovaaa spinovoerasŝepleniepoverhnostnyhsostoâniivkvantovyhâmahhgte
AT kvonzd spinovoerasŝepleniepoverhnostnyhsostoâniivkvantovyhâmahhgte
AT krishtopenkoss spinovoerasŝepleniepoverhnostnyhsostoâniivkvantovyhâmahhgte
AT mikhailovnn spinovoerasŝepleniepoverhnostnyhsostoâniivkvantovyhâmahhgte
AT dvoretskysa spinovoerasŝepleniepoverhnostnyhsostoâniivkvantovyhâmahhgte
first_indexed 2025-11-25T20:42:09Z
last_indexed 2025-11-25T20:42:09Z
_version_ 1850527092258635776
fulltext Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 2, pp. 185–191 Spin splitting of surface states in HgTe quantum wells A.A. Dobretsova1,2, Z.D. Kvon1,2, S.S. Krishtopenko3,4, N.N. Mikhailov1, and S.A. Dvoretsky1 1Rzhanov Institute of Semiconductor Physics, Novosibirsk 630090, Russia 2Novosibirsk State University, Novosibirsk 630090, Russia 3Institute for Physics of Microstructures RAS, GSP-105, Nizhni Novgorod 603950, Russia 4Laboratoire Charles Coulomb, UMR CNRS 5221, University of Montpellier, Montpellier 34095, France E-mail: kvon@thermo.isp.nsc.ru dobretsovaaa@gmail.com Received October 11, 2018, published online December 20, 2018 We report on beating appearance in Shubnikov–de Haas oscillations in conduction band of 18–22 nm HgTe quantum wells under applied top-gate voltage. Analysis of the beatings reveals two electron concentrations at the Fermi level arising due to Rashba-like spin splitting of the first conduction subband H1. The difference ΔNs in two concentrations as a function of the gate voltage is qualitatively explained by a proposed toy electrostatic model involving the surface states localized at quantum well interfaces. Experimental values of ΔNs are also in a good quantitative agreement with self-consistent calculations of Poisson and Schrödinger equations with eight- band ⋅k p Hamiltonian. Our results clearly demonstrate that the large spin splitting of the first conduction subband is caused by surface nature of H1 states hybridized with the heavy-hole band. Keywords: spin splitting, Rashba effect, surface states, Shubnikov–de Haas oscillations, quantum wells. Introduction Thin films based on HgTe are known by a number of its unusual properties originating from inverted band structure of HgTe [1–4]. The latter particularly results in existence of topologically protected gapless states, arising at HgTe boundaries with vacuum or materials with conventional band structure. Although these states were theoretically pre- dicted more than 30 years ago [5–7], clear experimental confirmation was not possible at that time due to lack of growth technology of high quality HgTe-based films. Exper- imental investigations of wide (the width 70d ≥ nm) strained HgTe quantum wells (QWs), which started only in 2011, confirmed existence of the predicted surface states and revealed their two-dimensional (2D) nature [4,8,9]. In comparison with other materials with the inverted band structure, in which the surface states are known being Dirac-like [10–12], HgTe spectrum involves heavy-hole band 8| , 3 / 2Γ ± 〉 modifying the surface state dispersion. Alt- hough strain opens a bulk band-gap and results thus in three dimensional (3D) topological insulator state of wide HgTe quantum wells [4,8,9], it does not cancel strong hybridiza- tion of the surface states with the 8| , 3 / 2Γ ± 〉 band. As a re- sult, the surface states in strained HgTe films can be resolved only at large energies, while at the low ones they are indis- tinguishable from conventional heavy-hole states [13,14]. In thin films of 3D topological insulator the surface states from the opposite boundaries may be coupled by quantum tunneling, so that small thickness-dependent gap is opened up [15–17]. In strained HgTe thin films, the latter arises deeply inside the heavy-hole band at the energies signifi- cantly lower than the top of the valence band [4]. In the ul- trathin limit, the HgTe quantum well transforms into sem- imetal [2,18] and then to 2D topological insulator [1,19] with both gapped surface and quantized bulk states. On the other hand, the electronic states in HgTe QWs are classified as hole-like nH , electron-like nE or light-hole-like nLH levels according to the dominant contribution from the bulk 8| , 3 / 2Γ ± 〉, 6| , 1 / 2Γ ± 〉 or 8| , 1 / 2Γ ± 〉 bands at zero quasimomentum = 0k [19]. The strong hybridization in inverted HgTe QWs results in the upper branch of the gapped surface states being represented by the 1H sub- band [4]. At large quasimomentum k the wave-functions of 1H subband are localized at the QW interfaces, while at Γ point of the Brillouin zone they are localized in the QW cen- ter and are thus indistinguishable from other 2D states. The gapped surface states in the films of 3D topological insulators exhibit sizable Rashba-type spin splitting, arising due to electrical potential difference between the two surfac- es [20]. Such spin splitting was first observed in QWs of Bi2Se3 [21], which is a conventional 3D topological insula- tor with Dirac-like surface states [10–12,21]. The spin split- © A.A. Dobretsova, Z.D. Kvon, S.S. Krishtopenko, N.N. Mikhailov, and S.A. Dvoretsky, 2019 A.A. Dobretsova, Z.D. Kvon, S.S. Krishtopenko, N.N. Mikhailov, and S.A. Dvoretsky ting of the gapped surface states also exists in HgTe QWs and should be naturally connected with the splitting of the 1H subband. Previous experimental studies of 12–21 nm wide HgTe QWs [22–24] have attributed large spin splitting of the 1H subband to the Rashba mechanism in 2D systems [25,26], enhanced by narrow gap, large spin-orbit gap be- tween the 8| , 1 / 2Γ ± 〉 and 7| , 1 / 2Γ ± 〉 bands, and the heavy- hole character of the 1H subband. The latter however con- tradicts the fact that the splitting of other subbands 2H , 3H , 4H etc. with the heavy-hole character is significantly lower. In this work, we investigate spin splitting of conduction band in 18–22 nm HgTe QWs with asymmetrical potential profile tuned by applied top gate voltage. The beating pat- tern of Shubnikov–de Haas (ShdH) oscillations, observed in all the samples at the applied top gate voltage, reveals two electron concentrations at the Fermi level due to the spin splitting of the 1H subband. Experimental difference in the concentrations as a function of the gate voltage is qualita- tively explained by a proposed toy electrostatic model in- volving the surface states at the QW interfaces. Self- consistent Hartree calculations based on eight-band ⋅k p Hamiltonian [27], being in good quantitative agreement with the experimental data, clearly show that the large Rashba- like spin splitting of the 1H subband is caused by the surface nature of 1H states hybridized with the heavy-hole states. Experiment Our experiments were carried out on undoped 22 nm (#081112) and symmetrically n-doped 18 nm (#130213) HgTe quantum wells with (013) surface orientation. The samples were grown by molecular beam epitaxy, the de- tailed description of their preparation can be found in [28,29]. The cross section of the structures is shown in Fig. 1(a). The structures were patterned into Hall bars with metallic top gate, distances between the contacts 100 and 250 µm and the bar width 50 µm. Electron concentration of n-doped sample #130213 at zero gate voltage was 11= 7.3 10sN ⋅ cm–2. The experiments were performed at temperatures from 2 to 0.2 K and magnetic fields up to 8 T. For magnetotransport measurements the standard lock-in technique was used with the excitation current 100 nA and frequencies 6–12 Hz. In this study we were interested in electron transport when only the first conduction subband is occupied. Electron concentration was thus in the range 11(1 9) 10− ⋅ cm–2. The electron mobility in this region was rather high (see Fig. 1(b)) within 10–60 m2/(V·s) for undoped and 8–20 m2/(V·s) for doped samples. Let us consider our results obtained for the undoped structures first. In Fig. 2 longitudinal resistivity xxρ as a function of magnetic field B is shown for top gate voltages gV from 0 to 7 V. Due to good sample quality Shubnikov– de Haas oscillations are already seen at 0.4 T. The key ex- perimental result is an appearance of oscillation beatings at gate voltage > 3gV V, whereas at = 0gV V resistivity oscil- lations are homogeneous. The oscillation beatings give an evidence of presence of two carrier types in the system with close concentrations. Fourier analysis of resistivity depend- ence on inverse magnetic field 1( )xx B−ρ with monotone background removed indeed shows two nearby peaks (see Fig. 3(a)). From the Fourier analyzes two electron concen- trations 1sN and 2sN can be straight calculated by = /si iN ef h , where we denote by 1f and 2f the lower and upper frequency positions of the Fourier peaks correspond- ingly. Note the above expression is written for spin non- degenerate electrons, this is justified since at considering gate voltage range only the first conduction subband is occupied. Although the Fourier analysis enables finding electron concentrations reasonably precisely, we found more accu- rate getting the frequencies from fitting of Shubnikov–de Haas oscillations by Lifshits–Kosevich formula [30–32]: 0 =1,2 2 = ( )exp cos ,xx i i i qii f A D X B B  ∆ρ π−π  + φ    ρ µ    ∑ (1) Fig. 1. (a) The cross section of the structures studied. (b) Transport mobility dependence on electron concentration for undoped (#081112) and symmetrically n-doped (#130213) samples. Fig. 2. (Color online) Longitudinal resistivity xxρ dependences on magnetic field B at top gate voltages = 0 7gV − V obtained for undoped 22 nm HgTe quantum well #081112. 186 Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 2 Spin splitting of surface states in HgTe quantum wells where 0ρ is the monotone resistivity part and =xx∆ρ 0( )xx= ρ −ρ is the oscillatory part; ( ) = / sinh( )D X X X is the thermal damping factor with 2= 2 /B cX k Tπ ω , Bk being Boltzmann constant and cω being cyclotron frequen- cy; qiµ are the quantum mobilities; iA and iφ are some con- stants. Before fitting the experimental curves we first removed any residual background, which we extracted from the initial curves by Fourier filtering. iA , iφ , iµ and if were used as fitting parameters. We used frequencies achieved from Fou- rier analysis (see Fig. 3(a)) as starting frequency values. To increase sensitivity to the low-field data we used the weight of 10 for data points at magnetic field less than 0.7 T. The fits were always excellent over the full field range, the ex- ample of fitting curve for = 7gV V is shown in Fig. 3(c). Concentrations 1sN and 2sN obtained from the fitting pro- cess described above as functions of gate voltage are shown in Fig. 3(b). The sum of two concentrations 1 2s sN N+ matches very well with the total concentration sN obtained from Hall measurements. An additional advantage of oscillation fitting is obtain- ing quantum mobilities qiµ , which are shown in Fig. 3(d) as functions of the total electron concentration sN , 1qµ and 2qµ are almost the same and do not change in a full con- centration range from 5·1011 to 9·1011 cm–2, also they are more than one order smaller than the transport mobility shown in Fig. 1(b). The difference between transport and quantum mobilities implies presence of long-range scatter- ing, which might be electron density inhomogeneities. The experimental results for symmetrically n-doped quantum well #130213 are shown in Figs. 4 and 5. Figure 4 shows longitudinal resistivity dependences on magnetic field ( )xx Bρ measured at top gate voltages gV from 0 to –4 V. Here oscillations are also homogeneous at zero gate voltage while at < 1gV − V a beating in the oscillations arises providing two peaks in Fourier transformation of (1/ )xx B∆ρ (see Fig. 5(a)), xx∆ρ is again the oscillatory part of xxρ . Since electron mobility in these structures is smaller than in the undoped ones (see Fig. 1(b)), oscillations arise only at 1B  T. Together with the elimination at large B by Zee- man splitting it enables only one beating being resolved. Since the beating shifts to larger fields with decreasing gate voltage at < 3gV − V it disappears due to overlapping with Zeeman splitting. We performed the same data processing procedure for the sample #130213 as we did it for #081112. While fitting the experimental curves by Eq. (1) we also used the weight of 10 for data points at magnetic field less than 1.5–2 T to increase sensitivity to the low-field data. We were succeed to fit all the curves well over the full field range (see, as example, Fig. 5(c)), the sum of two concentrations ob- tained from fitting is in agreement with Hall measurements (see Fig. 5(b)). Quantum mobilities shown in Fig. 5(d) are as well as the quantum mobilities in the undoped structure Fig. 3. (Color online) Results obtained for undoped 22 nm HgTe quantum well #081112: (a) fast Fourier transformation of 1( )xx B−ρ at gate voltage = 7gV V. (b) Electron concentrations 1sN (red circles) and 2sN (blue triangular) and their sum (green squares) obtained from Shubnikov–de Haas oscillations and total electron concentration sN obtained from Hall measurements (pink line) versus gate voltage. (c) The oscillatory resistivity part xx∆ρ normalized to the monotone resistivity part 0ρ versus in- verse magnetic field. Black line shows the result obtained exper- imentally at = 7gV V while red line is the fitting curve calculated by Eq. (1). (d) Quantum mobilities 1qµ and 2qµ versus total elec- tron concentration. Fig. 4. (Color online) Longitudinal resistivity xxρ dependences on magnetic field B at top gate voltages gV from 0 to –4 V ob- tained for symmetrically n-doped 18 nm HgTe quantum well #130213. Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 2 187 A.A. Dobretsova, Z.D. Kvon, S.S. Krishtopenko, N.N. Mikhailov, and S.A. Dvoretsky almost the same, do not change in a presented concentration range and one order smaller than the transport mobility. Discussion Beating pattern of Shubnikov–de Haas oscillations at high gate voltages, while at = 0gV the oscillations are ho- mogeneous, in both symmetrically doped and undoped QWs, indicates the origin of the spin splitting being asym- metry of the QW profile, changing with gV . Let us first demonstrate that the difference in the electron concentra- tions extracted from the ShdH oscillations can be qualita- tively explained by a toy electrostatic model involving the surface states at QW interfaces. This model was previously proposed for wide HgTe quantum wells [9], and here we briefly repeat its derivation. As for the relative changes in the concentrations, the in- itial conditions are not important, therefore, for simplicity, we assume electron concentrations on the top and bottom surfaces being the same at zero gV . Figure 6 schematically shows simplified band diagrams and electron distribution over the surface states for a structure with metallic top gate at zero and positive gate voltages. In the absence of gate voltage, the Fermi level remains the same across the struc- ture. When gate voltage is applied, the Fermi level differs in the metallic gate and QW layer by geV , where e is the ele- mentary charge. Since the left surface is closer to the gate, it partially screens the gate potential from the right surface. The change of electron concentration 2sN∆ at the left sur- face exceeds thus its changing 1sN∆ at the right one. In their turn, the difference in the concentrations induces an additional electrical potential growth HgTeeφ between left and right surfaces, while the Fermi level over the QW layer remains constant. The difference in the concentrations can be written as =si Fi iN E D∆ ∆ , where iD ( = 1,2i ) is the den- sity of states and FiE∆ is the local change of the Fermi en- ergy for the right (1) and left (2) surface states. 1FE∆ and 2FE∆ are connected thus as 2 1 HgTe=F FE E e∆ ∆ + φ . The potential difference between the two surface states can be evaluated from the charge neutrality and the Gauss's law as HgTe HgTe eff 1 eff HgTe 0= = /sd e N dφ ∆   , where effd is the effective distance between the opposite surface states and HgTe is electric field in the well. Here, we neglect a distor- tion of the QW profile from the linear dependence caused by distribution of charge carriers in the bulk of QW layer. Fi- nally, we find 2 2 1 2 1 eff 2 HgTe 0/ = / / .s sN N D D e d D∆ ∆ +   (2) The effective distance between the surface states effd can differ from the QW width due to localization of the surface states wave-functions not exactly on the boundaries of HgTe layer. In addition, the QW width in our samples is compara- ble with the scale of surface states localization [33] to ex- clude the interaction between electrons at different bounda- ries. Parameter effd can be evaluated by fitting experimental value of 2 1 2 1/ ( / ) / ( / )s s s g s gN N dN dV dN dV∆ ∆  with Eq. (2). It gives eff = 9d nm for the sample #081112 with 2 1( / ) / ( / ) = 1.43s g s gdN dV dN dV (see Fig. 3), which looks very reasonable for given QW width. Fig. 5. (Color online) Results obtained for symmetrically n-doped 18 nm HgTe quantum well #130213: (a) fast Fourier transfor- mation of 1( )xx B−ρ at gate voltage = 1.5gV − V. (b) Electron concentrations 1sN (red circles) and 2sN (blue triangular) and their sum (green squares) obtained from Shubnikov–de Haas oscillations and total electron concentration sN obtained from Hall measurements (pink line) versus gate voltage. (c) The oscil- latory resistivity part xx∆ρ normalized to the monotone resistivity part 0ρ versus inverse magnetic field. Black line shows the result obtained experimentally at = 1.5gV − V while red line is the fit- ting curve calculated by Eq. (1). (d) Quantum mobilities 1qµ and 2qµ versus total electron concentration. Fig. 6. Simplified band diagram and electron distribution over surface states for gate voltages = 0gV (a) and > 0gV (b). 188 Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 2 Spin splitting of surface states in HgTe quantum wells Let us obtain the expression for the difference in elec- tron concentrations at two different surfaces =sN∆ 2 1s sN N= − as a function of the total concentration sN . Now, the initial distribution of electrons over the structure becomes important. For simplicity, we assume that = 0sN for symmetric QW profile at = 0gV , and all electrons at non-zero gV come to the HgTe layer due to the top gate voltage. Thus, from =si siN N∆ and 1 2=s s sN N N+ , we get linear dependence of sN∆ on sN : 2 1 2 1 / 1 = . / 1 s s s s s s N N N N N N ∆ ∆ − ∆ ∆ ∆ + (3) Figure 7(a) provides a comparison between experimental data and estimation within our toy electrostatic model (pre- sented by green curve) for the undoped sample #081112. Here, we used = 20 , eff = 9d nm and 2 1= =D D 2* / 2m= π valid for parabolic dispersion of the surface states. The latter holds since hybridization with heavy holes modifies the band dispersion of the surface states, making it close to parabolic. From cyclotron resonance measurements [34] the effective mass of the surface states was obtained equal to * 00.026m m≈ , with 0m being free electron mass. Our toy electrostatic model is seen perfectly reproducing the slope of the experimental behavior of ( )s sN N∆ . More- over, it can fit experimental data if one assumes the residual concentration of 114 10⋅ cm–2 in the absence of gate voltage. Note that this value is twice higher than it was measured for the sample #081112 at = 0gV (see Fig. 3). The difference between theoretical estimation and experimental values gives the evidence of the importance of microscopic details of the surface states, which were completely ignored with- in our toy model. Therefore, we also perform self-consistent calculations of Poisson and Schrödinger equations with 8-band ⋅k p Hamil- tonian [27]. These calculations take into account all micro- scopic details of the surface states and thus allow obtaining a realistic QW profile. As it is done for a toy electrostatic model, here we also assume that all electrons at non-zero gV come to the HgTe layer due to the top gate. At the final iteration of solving self-consistently Poisson and Schrö- dinger equations, we obtain energy dispersions ( )E k (k is a quasimomentum in the QW plane). Then, for a given value of sN , we find the position of Fermi level and obtain the values of Fermi wave-vectors 1k and 2k . Finally, we find electron concentrations by 2= / 4si iN k π. Theoretical values of ( )s sN N∆ found from self-consistent calculations are shown in Fig. 7(a) by blue curve and are in a good agreement with the experimental data. Figure 7(c) provides an energy dispersion of the surface states at 11= 9 10sN ⋅ cm–2, where they are represented by 1H subband due to hybridization with the states of heavy- hole band. Surface state connection with the 1H subband is also supported by Fig. 7(d). The figure shows theoretical QW profile and wave-functions of the states at the Fermi level (see green curves). Spin-split states corresponding to 1k and 2k wave-vectors are clearly seen to localize at the opposite boundaries of HgTe QW. Large overlapping be- tween the surface states in our samples also explains only qualitative agreement of the experimental data with our toy electrostatic model. We note that hybridization of the sur- face states with the heavy-hole band is partially included in the toy model by using expression for the density of states 2*= / 2D m π , which is inherent for parabolic spectrum. The dashed black curves show dispersion of the surface states neglecting hybridization with the heavy holes. The surface states mixing with the 8| , 3 / 2Γ ± 〉 band is indeed seen transforming the linear dispersion of surface states into parabolic. Interestingly, the spin splitting of the sur- face states is significantly suppressed if the hybridization is included. ( )s sN N∆ obtained experimentally for the n-doped struc- ture #130213 is shown in Fig. 7(b). This pattern contradicts Fig. 7. (Color online) (a) and (b) show the difference between elec- tron concentrations 2 1=s s sN N N∆ − as a function of total concen- tration sN obtained experimentally (red circles) for samples #081112 (a) and #130213 (b). In (a) green line corresponds to cal- culations within toy electrostatic model, while blue line shows self- consistent calculations of Poisson and Schrödinger equations with eight-band Kane model Hamiltonian. (c) and (d) show results of the self-consistent calculations of Poisson and Schrödinger equations for electron concentration 11 2= 9 10 cmsN −⋅ . All electrons are assumed coming to the well due to top gate voltage. (c) shows the energy spectrum, where black dashed lines correspond to surface states without hybridization with heavy holes. (d) shows HgTe quantum well potential profile (blue and red lines are 8Γ and 6Γ bands correspondingly) and squared absolute values of wave functions of electron states at the Fermi level (green lines). Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 2 189 A.A. Dobretsova, Z.D. Kvon, S.S. Krishtopenko, N.N. Mikhailov, and S.A. Dvoretsky our expectations of the spin splitting increasing with the absolute gate voltage value and decreasing thus electron concentration. The reason is likely the presence of only one beating in the ShdH oscillations and thus less precise elec- tron concentration determination. As seen in Fig. 5(b) it is not crucial for determination of the total electron concen- tration however seems significant for that of electron con- centration difference. Conclusion To sum up we have investigated Rashba-like spin split- ting of the conduction 1H band in 18–22 nm HgTe quantum wells. Beating pattern of Shubnikov–de Haas oscillations, arising with applying top gate voltage in both undoped and symmetrically n-doped structures, provides two close elec- tron concentrations. We have qualitatively described the evolution of the difference between these concentrations with gate voltage by a toy electrostatic model involving electron states localization at the well interfaces. The quan- titative agreement between the experimental data and theo- retical calculations was achieved by self-consistent solving Poisson and Schrödinger equations with eight-band ⋅k p Hamiltonian, which takes into account microscopic details of the surface states omitted in our toy model. Comparison of the toy electrostatic model with the rigorous self- consistent calculations clearly shows large spin-splitting of 1H subband in the HgTe quantum wells being due to the surface nature of its states. Acknowledgments This work was supported by the Russian Foundation for Basic Research (projects no. 17-52-14007) and Govern- ment of Novosibirsk region (projects no. 17-42-543336). _______ 1. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766 (2007). 2. Z. Kvon, E. Olshanetsky, D. Kozlov, N. Mikhailov, and S. Dvoretskii, JETP Lett. 87, 502 (2008). 3. B. Büttner, C.X. Liu, G. Tkachov, E.G. Novik, C. Brüne, H. Buhmann, E.M. Hankiewicz, P. Recher, B. Trauzettel, S.C. Zhang, and L.W. Molenkamp, Nat. Phys. 7, 418 (2011). 4. C. Brüne, C.X. Liu, E.G. Novik, E.M. Hankiewicz, H. Buhmann, Y.L. Chen, X.L. Qi, Z.X. Shen, S.C. Zhang, and L.W. Molenkamp, Phys. Rev. Lett. 106, 126803 (2011). 5. M.I. Dyakonov and A.V. Khaetskii, JETP Lett. 33, 110 (1981). 6. M.I. Dyakonov and A.V. Khaetskii, JETP 82, 1584 (1982). 7. B.A. Volkov and O.A. Pankratov, JETP Lett. 42, 178 (1985). 8. D.A. Kozlov, Z.D. Kvon, E.B. Olshanetsky, N.N. Mikhailov, S.A. Dvoretsky, and D. Weiss, Phys. Rev. Lett. 112, 196801 (2014). 9. D.A. Kozlov, D. Bauer, J. Ziegler, R. Fischer, M.L. Savchenko, Z.D. Kvon, N.N. Mikhailov, S.A. Dvoretsky, and D. Weiss, Phys. Rev. Lett. 116, 166802 (2016). 10. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, and M.Z. Hasan, Nat. Phys. 5, 398 (2009). 11. D. Hsieh, Y. Xia, D. Qian, L. Wray, J.H. Dil, F. Meier, J. Osterwalder, L. Patthey, J.G. Checkelsky, N.P. Ong, A.V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, and M.Z. Hasan, Nature 460, 1101 (2009). 12. Y.L. Chen, J.G. Analytis, J.-H. Chu, Z.K. Liu, S.-K. Mo, X.L. Qi, H.J. Zhang, D.H. Lu, X. Dai, Z. Fang, S.C. Zhang, I.R. Fisher, Z. Hussain, and Z.-X. Shen, Science 325, 178 (2009). 13. L.G. Gerchikov and A.V. Subashiev, Physica Status Solidi (B) 160, 443 (1990). 14. A.A. Dobretsova, L.S. Braginskii, M.V. Entin, Z.D. Kvon, N.N. Mikhailov, and S.A. Dvoretsky, JETP Lett. 101, 330 (2015). 15. J. Linder, T. Yokoyama, and A. Sudbø, Phys. Rev. B 80, 205401 (2009). 16. C.-X. Liu, H. Zhang, B. Yan, X.-L. Qi, T. Frauenheim, X. Dai, Z. Fang, and S.-C. Zhang, Phys. Rev. B 81, 041307(R) (2010). 17. H.-Z. Lu, W.-Y. Shan, W. Yao, Q. Niu, and S.-Q. Shen, Phys. Rev. B 81, 115407 (2010). 18. E.B. Olshanetsky, Z.D. Kvon, M.V. Entin, L.I. Magarill, N.N. Mikhailov, I.O. Parm, and S.a. Dvoretsky, JETP Lett. 89, 290 (2009). 19. B. Bernevig, T. Hughes, and S. Zhang, Science 314, 1757 (2006). 20. W.-Y. Shan, H.-Z. Lu, and S.-Q. Shen, New J. Phys. 12, 043048 (2010). 21. H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Nat. Phys. 5, 438 (2009). 22. X.C. Zhang, A. Pfeuffer-Jeschke, K. Ortner, V. Hock, H. Buhmann, C.R. Becker, and G. Landwehr, Phys. Rev. B 63, 245305 (2001). 23. Y.S. Gui, C.R. Becker, N. Dai, J. Liu, Z.J. Qiu, E.G. Novik, M. Schäfer, X.Z. Shu, J.H. Chu, H. Buhmann, and L.W. Molenkamp, Phys. Rev. B 70, 115328 (2004). 24. K.E. Spirin, A.V. Ikonnikov, A.A. Lastovkin, V.I. Gavrilenko, S.A. Dvoretskii, and N.N. Mikhailov, JETP Lett. 92, 63 (2010). 25. E.I. Rashba, Fiz. Tverd. Tela (Leningrad) 2, 1224 (1960), [Sov. Phys. Solid State 2, 1109 (1960)]. 26. W. Zawadzki and P. Pfeffer, Semicond. Science and Tech. 19, R1 (2004). 27. S.S. Krishtopenko, I. Yahniuk, D.B. But, V.I. Gavrilenko, W. Knap, and F. Teppe, Phys. Rev. B 94, 245402 (2016). 28. N. Mikhailov, R. Smirnov, S. Dvoretsky, Y. Sidorov, V. Shvets, E. Spesivtsev, and S. Rykhlitski, Int. J. Nanotech. 3, 120 (2006). 29. Z.D. Kvon, E.B. Olshanetsky, D.A. Kozlov, N.N. Mikhailov, and S.A. Dvoretskii, Fiz. Nizk. Temp. 37, 258 (2011) [Low Temp. Phys. 37, 202 (2011)]. 30. E.M. Lifshits and A.M. Kosevich, J. Phys. Chem. Solids 4, 1 (1958). 190 Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 2 https://doi.org/10.1126/science.1148047 https://doi.org/10.1134/S0021364008090117 https://doi.org/10.1103/PhysRevLett.106.126803 https://doi.org/10.1103/PhysRevLett.112.196801 https://doi.org/10.1103/PhysRevLett.116.166802 https://doi.org/10.1038/nature08234 https://doi.org/10.1126/science.1173034 https://doi.org/10.1002/pssb.2221600207 https://doi.org/10.1002/pssb.2221600207 https://doi.org/10.1134/S0021364015050070 https://doi.org/10.1103/PhysRevB.80.205401 https://doi.org/10.1103/PhysRevB.81.115407 https://doi.org/10.1134/S002136400906006X https://doi.org/10.1126/science.1133734 https://doi.org/10.1088/1367-2630/12/4/043048 https://doi.org/10.1103/PhysRevB.63.245305 https://doi.org/10.1103/PhysRevB.70.115328 https://doi.org/10.1134/S0021364010130126 https://doi.org/10.1088/0268-1242/19/1/R01 https://doi.org/10.1103/PhysRevB.94.245402 https://doi.org/10.1504/IJNT.2006.008725 https://doi.org/10.1063/1.3573648 https://doi.org/10.1063/1.3573648 https://doi.org/10.1016/0022-3697(58)90189-6 Spin splitting of surface states in HgTe quantum wells 31. P.T. Coleridge, R. Stoner, and R. Fletcher, Phys. Rev. B 39, 1120 (1989). 32. R. Fletcher, M. Tsaousidou, T. Smith, P.T. Coleridge, Z.R. Wasilewski, and Y. Feng, Phys. Rev. B 71, 155310 (2005). 33. K.M. Dantscher, D.A. Kozlov, P. Olbrich, C. Zoth, P. Faltermeier, M. Lindner, G.V. Budkin, S.A. Tarasenko, V.V. Bel’kov, Z.D. Kvon, N.N. Mikhailov, S.A. Dvoretsky, D. Weiss, B. Jenichen, and S.D. Ganichev, Phys. Rev. B 92, 165314 (2015). 34. Z.D. Kvon, S.N. Danilov, N.N. Mikhailov, S.A. Dvoretsky, W. Prettl, and S.D. Ganichev, Physica E: Low-Dimens. Syst. and Nanostr. 40, 1885 (2008). ___________________________ Спінове розщеплення поверхневих станів в квантових ямах HgTe А.А. Добрецова, З.Д. Квон, С.С. Кріштопенко, М.М. Михайлов, С.А. Дворецький Виявлено появу биття в осциляціях Шубнікова–де Гааза в зоні провідності HgTe квантової ями завтовшки 18–22 нм при прикладенні верхньої затворної напруги. Аналіз биття вказує на два типи електронів з різними концентраціями на рівні Фермі, що виникають внаслідок рашба-подібного спі- нового розщеплення першої підзони провідності H1. Різниця двох концентрацій ΔNs як функція затворної напруги якісно пояснюється запропонованою спрощеною електростатичною моделлю поверхневих станів, локалізованих на гетерограниці квантових ям. Експериментальні значення ΔNs також знахо- дяться в хорошій кількісній згоді з самоузгодженими розра- хунками рівнянь Пуассона та Шредінгера для восьмизонного k · p гамільтоніана. Отримані результати наочно демонстру- ють, що велике спінове розщеплення першої підзони провід- ності обумовлено поверхневою природою станів H1, гібриди- зованих із зоною важких дірок. Ключові слова: спінове розщеплення, ефект Рашби, поверх- неві стани, осциляції Шубнікова–де Гааза, квантові ями. Спиновое расщепление поверхностных состояний в квантовых ямах HgTe А.А. Добрецова, З.Д. Квон, С.С. Криштопенко, Н.Н. Михайлов, С.А. Дворецкий Обнаружено появление биений в осцилляциях Шубнико- ва–де Гааза в зоне проводимости HgTe квантовой ямы тол- щиной 18–22 нм при приложении верхнего затворного на- пряжения. Анализ биений указывает на два типа электронов с различными концентрациями на уровне Ферми, возникаю- щих вследствие рашба-подобного спинового расщепления первой подзоны проводимости H1. Разность двух концентра- ций ΔNs как функция затворного напряжения качественно объясняется предложенной упрощенной электростатической моделью поверхностных состояний, локализованных на ге- терограницах квантовых ям. Экспериментальные значения ΔNs также находятся в хорошем количественном согласии с самосогласованными расчетами уравнений Пуассона и Шре- дингера для восьмизонного k · p гамильтониана. Полученные результаты наглядно демонстрируют, что большое спиновое расщепление первой подзоны проводимости обусловлено поверхностной природой состояний H1, гибридизованных с зоной тяжелых дырок. Ключевые слова: спиновое расщепление, эффект Рашбы, поверхностные состояния, осцилляции Шубникова–де Гааза, квантовые ямы. Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 2 191 https://doi.org/10.1103/PhysRevB.39.1120 https://doi.org/10.1103/PhysRevB.71.155310 https://doi.org/10.1103/PhysRevB.92.165314 Introduction Experiment Discussion Conclusion Acknowledgments