Stability of periodic clusters in globally coupled maps
The phenomenon of partial synchronization, — or clustering, — in a system of globally coupled C 1 - smooth maps is analyzed. We prove stability of equally populated K-clustered states with period-n temporal dynamics, referred to as PnCK-states. For this, we first obtain formulas giving relation b...
Saved in:
| Date: | 2002 |
|---|---|
| Main Authors: | Panchuk, A.A., Maistrenko, Y.L. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2002
|
| Series: | Нелінійні коливання |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/175837 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Stability of periodic clusters in globally coupled maps / A.A. Panchuk, Y.L. Maistrenko // Нелінійні коливання. — 2002. — Т. 5, № 3. — С. 334-345. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Phase chaos and multistability in the discrete Kuramoto model
by: Maistrenko, V.L., et al.
Published: (2008) -
Study of the Stability of the Mathematical Model of the Coupled Pendulums Motion
by: Сурганова, Ю. Е., et al.
Published: (2024) -
Study of the Stability of the Mathematical Model of the Coupled Pendulums Motion
by: Сурганова, Ю. Е., et al.
Published: (2024) -
Study of the Stability of the Mathematical Model of the Coupled Pendulums Motion
by: Yu. E. Surhanova, et al.
Published: (2023) -
The application of clustering techniques to predict the financial stability of banks
by: A. O. Drobiazko, et al.
Published: (2015)