New species of Oculatella (Synechococcales, Cyanobacteria) from terrestrial habitats of Ukraine
Here we describe two new species of Oculatella Zammit, Billi & Albertano from terrestrial habitats of Ukraine: O. ucrainica sp. nov. and O. kazantipica sp. nov. The strains were isolated from biological crusts collected at the Sea of Azov conqina beach, and both clay slopes and chalk outcrops...
Gespeichert in:
| Datum: | 2017 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут ботаніки ім. М.Г. Холодного НАН України
2017
|
| Schriftenreihe: | Український ботанічний журнал |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/175891 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | New species of Oculatella (Synechococcales, Cyanobacteria) from terrestrial habitats of Ukraine / O.M. Vinogradova, T.I. Mikhailyuk, K. Glaser, A. Holzinger, U. Karsten // Український ботанічний журнал. — 2017. — Т. 74, № 6. — С. 509-520. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-175891 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1758912025-02-23T20:19:16Z New species of Oculatella (Synechococcales, Cyanobacteria) from terrestrial habitats of Ukraine Нові види роду Oculatella (Synechococcales, Cyanobacteria) з наземних місцезростань України Новые виды рода Oculatella (Synechococcales, Cyanobacteria) из наземных местообитаний Украины Vinogradova, O.M. Mikhailyuk, T.I. Glaser, K. Holzinger, A. Karsten, U. Систематика, флористика, географія рослин Here we describe two new species of Oculatella Zammit, Billi & Albertano from terrestrial habitats of Ukraine: O. ucrainica sp. nov. and O. kazantipica sp. nov. The strains were isolated from biological crusts collected at the Sea of Azov conqina beach, and both clay slopes and chalk outcrops in the Kharkiv Region. Five strains evaluated in this study phenotypically and phylogenetically differed both among each other and from other species of this genus. On the phylogenetic tree based on 16S rRNA gene sequence comparison, original strains joined already known species of Oculatella forming isolated lineages, one of which joined the group of drought-resistant terrestrial species (O. ucrainica), while another (O. kazantipica) grouped together with terrestrial O. neakameniensis Kováčik et Johansen and aquatic O. hafneriensis Kováčik et Johansen. The phylogeny based on the 16S rRNA gene concatenated with the 16S-23S ITS region, as well as secondary structures of the most informative helices of the 16S-23S ITS confirmed new species designation. Filaments of O. ucrainica are narrower (1.5–3.0 μm), and trichomes are wider (1.3–2.7 μm) comparing to O. kazantipica (its filaments are 1.3–7.5 μm wide, trichomes 1.1–1.7 μm wide). The new species also differ from one another in sheath morphogenesis, appearence of trichomes, and cell length. Oculatella ucrainica morphologically and phylogenetically is close to desert species O. coburnii Pietrasiak et Johansen, differing in the higher degree of sheath formation, wider trichomes, apical cells without irregular outgrowth, and by composition and secondary structure of 16S-23S ITS region. O. kazantipica is similar to O. hafneriensis and O. neakameniensis, from which it differs in more abundant sheath, false branching, granulations at cross walls, longer intercalary cells, and by composition and secondary structure of its 16S-23S ITS region. Описані нові для науки види з роду Oculatella Zammit, Billi & Albertano: O. ucrainica sp. nov. та O. kazantipica sp. nov., виділені з біологічних кірочок, відібраних на ракушняковому пляжі біля Азовського моря (АР Крим), а також на крейдяних та глинистих схилах у Харківській області. Комплексне дослідження п'яти отриманих штамів Oculatella показало, що фенотипично та філогенетично вони відрізняються від усіх відомих видів цього роду. На філогенетичному дереві, побудованому на основі порівняння послідовностей генів 16S рРНК, штами нових видів приєднались до вже відомих видів Oculatella, які утворювали окремі лінії, при цьому один з них (O. ucrainica) увійшов до групи засухостійких наземних видів, а інший (O. kazantipica) потрапив до однієї клади з терестріальним видом O. neakameniensis Kováčik et Johansen та озерним O. hafneriensis Kováčik & Johansen. Філогенетичний аналіз за ділянкою 16S рРНК, зв'язаною з регіоном 16S-23S ITS, а також вторинні структури найінформативніших хеліксів 16S-23S ITS підтвердили виділення нових видів, які морфологічно також чітко відрізняються. Нитки O. ucrainica вужчі (1,5–3,0 мкм), а трихоми ширші (1,3– 2,7 мкм), ніж у O. kazantipica (нитки 1,3–7,5 мкм шир., трихоми 1,1–1,7 мкм шир.), є відмінності у морфогенезі піхов, перетягнутості трихомів та довжині клітин. Oculatella ucrainica найбільш подібний до пустельного виду O. coburnii Pietrasiak & Johansen, від якого відрізняється інтенсивністю формування піхов, ширшими трихомами, відсутністю неправильного виросту на кінцевих клітинах, а також конфігурацією вторинної структури регіону 16S-23S ITS. Oculatella kazantipica близька до O. hafneriensis та O. neakameniensis, від яких відрізняється за морфологією піхов, наявністю несправжнього галуження, грануляціями біля поперечних перегородок, більшою довжиною інтеркалярних клітин, та деталями будови вториннної структури регіону 16S-23S ITS. Описаны новые для науки виды из рода Oculatella Zammit, Billi & Albertano: O. ucrainica sp. nov. и O. kazantipica sp. nov., выделенные из биологических корочек, отобранных на ракушечниковом пляже у Азовского моря (АР Крым), а также на меловых и глинистых склонах в Харьковской обл. Комплексное исследование пяти полученных штаммов Oculatella показало, что фенотипически и филогенетически они отличаются от всех известных видов этого рода. На филогенетическом дереве, построенном на основе сравнения последовательностей генов 16S рРНК, штаммы новых видов присоединялись к уже известным видам Oculatella, образующим отдельные линии, при этом один из них (O. ucrainica) вошел в группу засухоустойчивых наземных видов, а другой (O. kazantipica) попал в одну кладу с наземным видом O. neakameniensis Kováčik et Johansen и водным O. hafneriensis Kováčik & Johansen. Филогенетический анализ по участку 16S рРНК, связанному с регионом 16S-23S ITS, а также вторичные структуры наиболее информативных хеликсов 16S-23S ITS подтвердили выделение новых видов, которые морфологически также хорошо различимы между собой. Нити O. ucrainica ýже (1,5–3,0 мкм), а трихомы шире (1,3–2,7 μm), чем у O. kazantipica (нити 1,3–7,5 мкм шир., трихомы 1,1– 1,7 мкм шир.), отличия также касаются морфогенеза влагалища, перешнурованности трихомов и длины клеток. Oculatella ucrainica наиболее сходен с пустынным видом O. coburnii Pietrasiak & Johansen, от которого отличается интенсивностью формирования влагалища, более широкими трихомами, отсутствием неправильного выроста на конечных клетках, а также конфигурацией вторичной структуры региона 16S-23S ITS. Oculatella kazantipica близка к O. hafneriensis и O. neakameniensis, от которых отличается морфологией влагалища, наличием ложного ветвления, грануляциями у поперечных перегородок, большей длиной интеркалярных клеток и деталями строения вторичной структуры региона 16S-23S ITS. The research was supported by a Georg-Forster Fellowship of the Alexander von Humboldt Foundation (Alexander von Humboldt Stiftung) to the second author. We are grateful to Dr. Alla B. Gromakova, V.N. Karazin National University, Ukraine, for the samples of biological crusts collected in Kharkiv Region. We thank Sabrina Obwegeser, Beatrix Jungwirth and Lisa Obwegs, University of Innsbruck, Austria, for providing help in the TEM investigations, Jeffrey R. Johansen, John Carroll University, University Heights, USA, for providing original sequence of Oculatella hafneriensis, Dr. Maike Lorenz, University of Göttingen, Germany, for help during strain deposition to SAG, as well as Eduard Demchenko, M.G. Kholodny Institute of Botany of NASU, for help during cultivation of Oculatella strains. 2017 Article New species of Oculatella (Synechococcales, Cyanobacteria) from terrestrial habitats of Ukraine / O.M. Vinogradova, T.I. Mikhailyuk, K. Glaser, A. Holzinger, U. Karsten // Український ботанічний журнал. — 2017. — Т. 74, № 6. — С. 509-520. — Бібліогр.: 15 назв. — англ. 0372-4123 DOI: 10.15407/ukrbotj74.06.509 https://nasplib.isofts.kiev.ua/handle/123456789/175891 en Український ботанічний журнал application/pdf Інститут ботаніки ім. М.Г. Холодного НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Систематика, флористика, географія рослин Систематика, флористика, географія рослин |
| spellingShingle |
Систематика, флористика, географія рослин Систематика, флористика, географія рослин Vinogradova, O.M. Mikhailyuk, T.I. Glaser, K. Holzinger, A. Karsten, U. New species of Oculatella (Synechococcales, Cyanobacteria) from terrestrial habitats of Ukraine Український ботанічний журнал |
| description |
Here we describe two new species of Oculatella Zammit, Billi & Albertano from terrestrial habitats of Ukraine:
O. ucrainica sp. nov. and O. kazantipica sp. nov. The strains were isolated from biological crusts collected at the Sea of Azov
conqina beach, and both clay slopes and chalk outcrops in the Kharkiv Region. Five strains evaluated in this study phenotypically
and phylogenetically differed both among each other and from other species of this genus. On the phylogenetic tree based on
16S rRNA gene sequence comparison, original strains joined already known species of Oculatella forming isolated lineages, one
of which joined the group of drought-resistant terrestrial species (O. ucrainica), while another (O. kazantipica) grouped together
with terrestrial O. neakameniensis Kováčik et Johansen and aquatic O. hafneriensis Kováčik et Johansen. The phylogeny based
on the 16S rRNA gene concatenated with the 16S-23S ITS region, as well as secondary structures of the most informative helices
of the 16S-23S ITS confirmed new species designation. Filaments of O. ucrainica are narrower (1.5–3.0 μm), and trichomes
are wider (1.3–2.7 μm) comparing to O. kazantipica (its filaments are 1.3–7.5 μm wide, trichomes 1.1–1.7 μm wide). The new
species also differ from one another in sheath morphogenesis, appearence of trichomes, and cell length. Oculatella ucrainica
morphologically and phylogenetically is close to desert species O. coburnii Pietrasiak et Johansen, differing in the higher degree
of sheath formation, wider trichomes, apical cells without irregular outgrowth, and by composition and secondary structure of
16S-23S ITS region. O. kazantipica is similar to O. hafneriensis and O. neakameniensis, from which it differs in more abundant
sheath, false branching, granulations at cross walls, longer intercalary cells, and by composition and secondary structure of its
16S-23S ITS region. |
| format |
Article |
| author |
Vinogradova, O.M. Mikhailyuk, T.I. Glaser, K. Holzinger, A. Karsten, U. |
| author_facet |
Vinogradova, O.M. Mikhailyuk, T.I. Glaser, K. Holzinger, A. Karsten, U. |
| author_sort |
Vinogradova, O.M. |
| title |
New species of Oculatella (Synechococcales, Cyanobacteria) from terrestrial habitats of Ukraine |
| title_short |
New species of Oculatella (Synechococcales, Cyanobacteria) from terrestrial habitats of Ukraine |
| title_full |
New species of Oculatella (Synechococcales, Cyanobacteria) from terrestrial habitats of Ukraine |
| title_fullStr |
New species of Oculatella (Synechococcales, Cyanobacteria) from terrestrial habitats of Ukraine |
| title_full_unstemmed |
New species of Oculatella (Synechococcales, Cyanobacteria) from terrestrial habitats of Ukraine |
| title_sort |
new species of oculatella (synechococcales, cyanobacteria) from terrestrial habitats of ukraine |
| publisher |
Інститут ботаніки ім. М.Г. Холодного НАН України |
| publishDate |
2017 |
| topic_facet |
Систематика, флористика, географія рослин |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/175891 |
| citation_txt |
New species of Oculatella (Synechococcales, Cyanobacteria) from terrestrial habitats of Ukraine / O.M. Vinogradova, T.I. Mikhailyuk, K. Glaser, A. Holzinger, U. Karsten // Український ботанічний журнал. — 2017. — Т. 74, № 6. — С. 509-520. — Бібліогр.: 15 назв. — англ. |
| series |
Український ботанічний журнал |
| work_keys_str_mv |
AT vinogradovaom newspeciesofoculatellasynechococcalescyanobacteriafromterrestrialhabitatsofukraine AT mikhailyukti newspeciesofoculatellasynechococcalescyanobacteriafromterrestrialhabitatsofukraine AT glaserk newspeciesofoculatellasynechococcalescyanobacteriafromterrestrialhabitatsofukraine AT holzingera newspeciesofoculatellasynechococcalescyanobacteriafromterrestrialhabitatsofukraine AT karstenu newspeciesofoculatellasynechococcalescyanobacteriafromterrestrialhabitatsofukraine AT vinogradovaom novívidiroduoculatellasynechococcalescyanobacteriaznazemnihmíscezrostanʹukraíni AT mikhailyukti novívidiroduoculatellasynechococcalescyanobacteriaznazemnihmíscezrostanʹukraíni AT glaserk novívidiroduoculatellasynechococcalescyanobacteriaznazemnihmíscezrostanʹukraíni AT holzingera novívidiroduoculatellasynechococcalescyanobacteriaznazemnihmíscezrostanʹukraíni AT karstenu novívidiroduoculatellasynechococcalescyanobacteriaznazemnihmíscezrostanʹukraíni AT vinogradovaom novyevidyrodaoculatellasynechococcalescyanobacteriaiznazemnyhmestoobitanijukrainy AT mikhailyukti novyevidyrodaoculatellasynechococcalescyanobacteriaiznazemnyhmestoobitanijukrainy AT glaserk novyevidyrodaoculatellasynechococcalescyanobacteriaiznazemnyhmestoobitanijukrainy AT holzingera novyevidyrodaoculatellasynechococcalescyanobacteriaiznazemnyhmestoobitanijukrainy AT karstenu novyevidyrodaoculatellasynechococcalescyanobacteriaiznazemnyhmestoobitanijukrainy |
| first_indexed |
2025-11-25T02:08:28Z |
| last_indexed |
2025-11-25T02:08:28Z |
| _version_ |
1849726351376908288 |
| fulltext |
509Укр. бот. журн., 2017, 74(6)
Систематика, флористика, географія рослин
Plant Taxonomy, Geography and Floristics
© O. VINOGRADOVA, T. MIKHAILYUK, K. GLASER,
A. HOLZINGER, U. KARSTEN, 2017
Introduction
The genus Oculatella Zammit, Billi & Albertano, which
is morphologically similar to the genus Leptolyngbya
Anagnostidis & Komárek, was separated from the latter
on the basis of differences in sequence of the 16S rRNA
gene and the secondary structure of the 16S-23S ITS
region (Zammit et al., 2012; Osorio-Santos et al., 2014).
The name of the genus is due to the photosensitive reddish
eyespot (oculus) at the tip of mature apical cells, clearly
visible in a light microscope. Recently, we reported the
discovery on the Sea of Azov coast morphotypes of
thin filamentous cyanobacteria possessing mentioned
autapomorph and with nucleotide sequence of the 16S
rRNA gene completely corresponding to Oculatella
(Mikhailyuk et al., 2016). A new detailed analysis of
these strains, based on the phylogeny of the 16S rRNA
gene concatenated with the 16S-23S ITS region, as well
as secondary structures of the most informative helices
of the 16S-23S ITS, showed that our strains differ from
all known Oculatella species. Further morphological
observations and molecular study of the isolated
strains revealed that in the crusts of seaside habitats,
in fact, there are two species, each having a number of
differences from known representatives of this genus.
In parallel, studying samples of cyanobacterial crusts
from several areas of the cretaceous outcrops in Kharkiv
Region, we also found morphotypes of Oculatella,
doi: 10.15407/ukrbotj74.06.509
New species of Oculatella (Synechococcales, Cyanobacteria) from
terrestrial habitats of Ukraine
Oxana VINOGRADOVA1, Tatiana MIKHAILYUK1, Karin GLASER2,
Andreas HOLZINGER3, Ulf KARSTEN2
1 M.G. Kholodny Institute of Botany, NAS of Ukraine
2, Tereshchenkivska St., Kyiv 01004, Ukraine
2University of Rostock, Institute of Biol. Sci., Department of Appl. Ecology and Phycology
3, Albert-Einstein-Strasse, Rostock D-18057, Germany
3University of Innsbruck, Department of Botany, Functional Plant Biology
Sternwartestrasse 15, Innsbruck A-6020, Austria
Vinogradova O., Mikhailyuk T., Glaser K., Holzinger A., Karsten U. New species of Oculatella (Synechococcales, Cyanobacteria)
from terrestrial habitats of Ukraine. Ukr. Bot. J., 2017, 74(6): 509–520.
Abstract. Here we describe two new species of Oculatella Zammit, Billi & Albertano from terrestrial habitats of Ukraine:
O. ucrainica sp. nov. and O. kazantipica sp. nov. The strains were isolated from biological crusts collected at the Sea of Azov
conqina beach, and both clay slopes and chalk outcrops in the Kharkiv Region. Five strains evaluated in this study phenotypically
and phylogenetically differed both among each other and from other species of this genus. On the phylogenetic tree based on
16S rRNA gene sequence comparison, original strains joined already known species of Oculatella forming isolated lineages, one
of which joined the group of drought-resistant terrestrial species (O. ucrainica), while another (O. kazantipica) grouped together
with terrestrial O. neakameniensis Kováčik et Johansen and aquatic O. hafneriensis Kováčik et Johansen. The phylogeny based
on the 16S rRNA gene concatenated with the 16S-23S ITS region, as well as secondary structures of the most informative helices
of the 16S-23S ITS confirmed new species designation. Filaments of O. ucrainica are narrower (1.5–3.0 μm), and trichomes
are wider (1.3–2.7 μm) comparing to O. kazantipica (its filaments are 1.3–7.5 μm wide, trichomes 1.1–1.7 μm wide). The new
species also differ from one another in sheath morphogenesis, appearence of trichomes, and cell length. Oculatella ucrainica
morphologically and phylogenetically is close to desert species O. coburnii Pietrasiak et Johansen, differing in the higher degree
of sheath formation, wider trichomes, apical cells without irregular outgrowth, and by composition and secondary structure of
16S-23S ITS region. O. kazantipica is similar to O. hafneriensis and O. neakameniensis, from which it differs in more abundant
sheath, false branching, granulations at cross walls, longer intercalary cells, and by composition and secondary structure of its
16S-23S ITS region.
Keywords: Synechococcales, Oculatella ucrainica, Oculatella kazantipica, new species, biological crusts, Ukraine, molecular
sequencing, 16S rRNA, 16S-23S ITS, secondary structure
Supplementary Material. Electronic Supplement (Table E1, p. e1) is available in the online version of this article at:
https://ukrbotj.co.ua/archive/74/6/509
510 Ukr. Bot. J., 2017, 74(6)
LIBRA 120 transmission electron microscopes at 80 kV.
Images were captured with a TRS 2k SSCCD camera
and further processed using Adobe Photoshop software
(Adobe Systems Inc., San José, California, USA).
DNA isolation, PCR, sequencing and phylogenetic
analysis
DNA of the cyanobacterial strains was extracted
using the DNeasy Plant Mini Kit (Qiagen GmbH,
Hilden, Germany) according to the manufacturer's
instructions. Nucleotide sequences of the 16S rRNA
gene together with 16S-23S ITS region were amplified
using Taq PCR Mastermix Kit (Qiagen GmbH) and
primers SSU-4-forw and ptLSU C-D-rev (Marin
et al., 2005) in a thermocycler Tgradient Thermoblock
(Biometra, Germany) under the conditions described
in our previous paper (Mikhailyuk et al., 2016). PCR
products were cleaned using a Qiagen PCR purification
kit (Qiagen GmbH) according to the manufacturer's
instructions. Cleaned PCR products were sequenced
commercially by Qiagen Company using primers
SSU-4-forw, Wil 6, Wil 12, Wil 14, Wil 5, Wil 9, Wil
16 and ptLSU C-D-rev (Wilmotte et al., 1993; Marin
et al., 2005). The resulting sequences were assembled
and edited using Geneious software (version 8.1.8;
Biomatters). They were deposited in GenBank under
the accession numbers MG652616-MG652620.
For comparison with five original strains, we used
63 nucleotide sequences of representatives of the
order Synechococcales available in GenBank (NCBI*).
Sequence of Oculatella hafneriensis Kováčik et Johansen
used in the study was provided by Jeffrey R. Johansen
(John Carroll University, University Heights, USA)
during personal communication and deposited by us in
GenBank under the accession number and authorship
of mentioned person. Sequence of O. hafneriensis
previously deposited in GenBank (DQ085093) has some
doubtful parts and lacking the 16S-23S ITS region.
Multiple alignment of the nucleotide sequences
for phylogeny based on the 16S rRNA gene was made
using Mafft web server (version 7, Katoh and Standley,
2013) followed by manual editing in the program
BioEdit (version 7.2). Alignment for the phylogeny of
the 16S-23S ITS region was performed manually in
BioEdit, taking into account the secondary structure of
the RNA in the region. The evolutionary model that is
best suited to the used database was selected on the basis
of the lowest AIC value (Akaike, 1974) calculated in
MEGA (version 6, Tamura et al., 2013). Phylogenetic
* See the Electronic Supplement in the online version of the article:
https://ukrbotj.co.ua/archive/74/6/509
which we managed to isolate into culture. It turned out
that one of these strains morphologically, as well as by
a number of molecular markers, completely coincides
with the three strains from the seacoast.
The paper reports on two new species of Oculatella
from the terrestrial environments of Ukraine described
using combined molecular and morphological data.
Materials and methods
Isolation of the strains, culture conditions, light and
transmission electron microscopy
The strains in this study were isolated from the
samples of biological soil crusts collected on the coast of
the Sea of Azov in Kazantip Nature Reserve (Leninsky
District, the Crimea) and at the chalk outcrops in
Dvorichansky District of Kharkiv Region (Table 1).
Sampling and processing of collected material were
described in details in our previous paper (Mikhailyuk
et al., 2016).
All strains were maintained on 1N BBM (Bischoff
and Bold, 1963) and BG-11 (Stanier et al., 1971)
agarized media at 12 : 12 light : dark photoperiod at
+20 ± 5ºС. Morphological examinations of cultures
of cyanobacteria starting from 2 weeks and up to 6
months of cultivation were performed using Olympus
BX51 light microscope with Nomarski DIC optics.
Photomicrographs were taken from live material
with digital camera Olympus UC30 attached to the
microscope and processed by software cellSens Entry.
Reference cultures of newly described species (KZ-
5-4-1 and KZ-19-s-2) were deposited in the culture
collection of University of Göttingen, Germany (SAG
2563, 2567). All other Oculatella strains are maintained
in the algal culture collection at University of Rostock,
Germany. For each newly described Oculatella species,
a herbarium accession was prepared. Young (3–4
weeks) cultures of reference strains were preserved in
4% formaldehyde in a 15 mL glass bottle. The preserved
material was then deposited in the Herbarium of the
M.G. Kholodny Institute of Botany, NAS of Ukraine
(KW-A 32375-32376).
Samples were fixed for transmission electron
microscopy (TEM) using a standard chemical fixation
protocol (2.5% glutaraldehyde, 1% OsO
4
in 10 mM
caccodylate buffer, pH 6.8) according to Holzinger et al.
(2009). Samples were dehydrated in increasing ethanol
concentrations, transferred to modified Spurr´s resin
and heat polymerized. For TEM, ultrathin sections
were prepared, counterstained with uranyl acetate
and Reynold's lead citrate, and investigated by a Zeiss
511Укр. бот. журн., 2017, 74(6)
clade (Fig. 1). More detailed phylogenetic analysis on
the base of 16S rRNA gene sequence concatenated with
the 16S-23S ITS region reflected differences in gene
identities of the original strains. One of the seaside strains
(KZ-19-s-2) grouped in subclade with O. hafneriensis
Kováčik et Johansen and O. neakameniensis Kováčik et
Johansen, while the other three together with "chalky"
strain joined the group of drought-resistant terrestrial
species of Oculatella inhabiting arid to semi-arid desert
soils: O. atacamensis Osorio-Santos et Johansen,
O. mojaviensis Pietrasiak et Johansen and O. coburnii
Pietrasiak et Johansen (Osorio-Santos et al., 2014).
The four strains (KZ-5-4-1, KZ-7-1-4, KZ-12-1 and
Vin-4-4-1) represent a new species O. ucrainica sp.
nov. (see below); the fifth strain (KZ-19-s-2) despite
closeness to O. neakameniensis and O. hafneriensis
formed a highly supported separate lineage which
corresponded to another new species described here as
O. kazantipica sp. nov. (see below).
Comparison of the main helices of 16S-23S ITS
secondary structure of our isolates and phylogenetically
close species (Fig. 3) showed general similarity of all
Oculatella strains especially in structure of D1-D1' and
Box-B helices. Our newly described species differ
from close known taxa by one unique base in D1-
D1' and Box-B helices (O. ucrainica) and by two
unique bases in D1-D1' helix and one unique base
in Box-B helix (O. kazantipica). V-3 helix is quite
similar in all compared taxa, but has the most unique
base composition in O. hafneriensis (15 unique bases).
O. neakameniensis differs as well by unique structure
trees were constructed in the program MrBayes 3.2.2
(Ronquist, Huelsenbeck, 2003), using an evolutionary
model GTR + G + I, with 5,000,000 generations.
Two of the four runs of Markov chain Monte Carlo
were made simultaneously, with the trees, taken every
500 generations. Split frequencies between runs at the
end of calculations were below 0.01. The trees selected
before the likelihood rate reached saturation were
subsequently rejected. The reliability of tree topology
verified by the maximum likelihood analysis (ML)
were made using the program GARLI 2.1. Models of
the secondary structure of 16S-23S ITS region of the
original strains were built according to published data
(Osorio-Santos et al., 2014). Helices were folded with
the online software mfold (Zuker, 2003) and visualized
in the online tool Pseudoviewer (Byun, Han, 2009).
Results and discussion
The study of enrichment cultures of the samples of
biological crusts from the coast of the Sea of Azov
and chalk outcrops in Kharkiv Region revealed that
thin filaments with reddish eyespot in mature apical
cells occur quite common: we found them in 57% of
the samples from the sea coast and 69% from chalks.
Morphological evaluation of selected original strains
(Table 2) confirmed taxonomical designation into
the genus Oculatella. Phylogenetic analysis based on
16S rRNA gene sequence comparison supported this
matching. Our strains, morphologically attributed
to genus Oculatella, on the phylogenetic tree joined
already known species of this genus, forming an isolated
Table 1. Sampling sites for the Oculatella strains reported in this study
Strain ID Location GPS-coordinates
Sampling
date
Site description
KZ-5-4-1
The coast of the Sea of Azov, vicinities of
Kazantip Nature Reserve, spit of
Aqtash Lake
45°43′85″ N 35°85′25″ E 08.08.2012
Coquina beach, 10 m from the water's edge,
cyanobacterial-algal crusts with dominance
of Nostoc edaphicum Kondrat.
KZ-7-1-4
The coast of the Sea of Azov, vicinities of
Kazantip Nature Reserve, spit of
Aqtash Lake
45°43′85″ N 35°85′25″ E 08.08.2012
Coquina beach, 10 m from the water's edge,
cyanobacterial-algal crusts with dominance
of Nostoc edaphicum and Hassalia sp.
KZ-12-1
The coast of the Sea of Azov, Kazantip
Nature Reserve, Sharabay Bay
45°46′76″ N 35°84′04″ E 10.08.2012
Clay slope with sparse steppe vegetation,
hypolithic under quartz fragments together
with other cyanobacteria and algae
KZ-19-s-2
The coast of the Sea of Azov, Kazantip
Nature Reserve, Shyrokaya Bay
45°47′04″ N 35°85′47″ E 07.08.2012
Coquina beach, cyanobacterial-algal crusts
with dominance of Microcoleus vaginatus
Gomont ex Gomont
Vin-4-4-1
Vicinities of village Petro-Ivanivka, the
Verkhnia Dvorichna River right bank,
steep chalk slopes, 121 m above sea level
49°55′32″ N 37°40′45″ E 28.05.2012
The middle part of the slope, growths on
the soil with mosses, cyanobacterial-algal
crusts with dominance of Hassalia sp. and
Nostoc sp.
512 Ukr. Bot. J., 2017, 74(6)
Fig. 1. Molecular phylogeny of Synechococcales based on 16S rRNA sequence comparisons. A phylogenetic tree was inferred by
the Bayesian method with Bayesian Posterior Probabilities (PP) and Maximum Likelihood bootstrap support (BP) indicated at
nodes. From left to right, support values correspond to Bayesian PP and Maximum Likelihood BP; BP values lower than 50%
and PP lower than 0.8 not shown. Strains marked with underline are newly sequenced cyanobacteria. Clade designations follow
Osorio-Santos et al., 2014 and Miscoe et al., 2016*
* Sequence of Oculatella hafneriensis used in the study was provided by Jeffrey R. Johansen (John Carroll University, University Heights, USA)
via personal communication.
513Укр. бот. журн., 2017, 74(6)
Fig. 2. Molecular phylogeny of genus Oculatella based on 16S-23S ITS sequence comparisons. A phylogenetic tree was inferred
by the Bayesian method with Bayesian Posterior Probabilities (PP) and Maximum Likelihood bootstrap support (BP) indicated
at nodes. From left to right, support values correspond to Bayesian PP and Maximum Likelihood BP; BP values lower than 50%
and PP lower than 0.8 not shown. Strains marked with underline are newly sequenced cyanobacteria
514 Ukr. Bot. J., 2017, 74(6)
of V-3 helix in the base part due to one unique base
difference. Our new species have V-3 helices similar to
O. coburnii, but differed by one base in the basal loop
(O. ucrainica and O. kazantipica) and by one unique
insertion (O. kazantipica). V-2 helix of O. ucrainica
was identical with the helices of all terrestrial species
of Oculatella. O. kazantipica had V-2 helix similar to
O. hafneriensis but differed by 3 unique bases.
Revealed morphotypes differ both among the two new
species and from other species of Oculatella (Table 2,
Figs 4, 5). As can be seen from the table and figures,
the width range of the filaments in O. kazantipica (1.3–
7.5 μm) is significantly higher than that of O. ucrainica
(1.5–3.0 μm); it relates to the different nature of the
sheath formation in these species. In old cultures of both
species, the sheath became broader and stronger, but in
O. ucrainica the extension of the filament is because the
sheath somewhat retreated from the trichome, whereas
in O. kazantipica the sheath gradually expanded,
sometimes becoming lamellar. The new species also
differ one another in appearance and trichome width.
Trichomes of O. ucrainica are broader (1.3–2.7 μm),
clearly constricted and rarely with granulations at
cross walls. In contrast, O. kazantipica trichomes
unconstricted or weakly constricted but usually with
granulations at crosswalls; the width of the trichome
(1.1–1.7 μm) is smaller, but the length of the cells (4.7–
7.5 μm) exceeds that of the first species (Table 2).
From the type species О. subterranea Zammit, Billi
et Albertano both new species differ by the blue-green
Fig. 3. Secondary structure of the main informative helices of region 16S-23S ITS of newly described species (Oculatella
ucrainica (ucr) and O. kazantipica (kaz)) and comparison with the most close known species of Oculatella (O. neakameniensis
(nea), O. coburnii (cob) and O. hafneriensis (haf)). Variable bases are shown with arrowheads, places of insertions/deletions of
base pairs are marked with arrows, unique bases are indicated with asterisk
515Укр. бот. журн., 2017, 74(6)
"aquatic" species, but in the trichome width it exceeds
all known species of genus Oculatella. Morphologically
O. ucrainica is the most similar to O. coburnii: common
features are constrictions at cross walls and length
of intercalary cells. It is interesting that O. ucrainica
represents the sister lineage to O. coburnii in 16S-23S
ITS phylogeny (Fig. 2) and shows most similarties in
the secondary structure of 16S-23S ITS region (Fig. 3).
TEM investigation of O. ucrainica strains showed
4–6 parietal thylakoids in vegetative cells and dark
granules near cross walls (Fig. 6). The ultrastructure
with parietal arrangement of thylakoids are typical for
both other species of Oculatella (Zammit et al., 2012;
Osorio-Santos et al., 2014) and representatives of
Synechococcales.
The appearance and dimensional features of
O. kazantipica differ from other species of this genus
to a lesser degree: the distinctive characters are the
upper limit of the filament width, and the clearly
visible granulations at cell walls; they are also present
in O. cataractarum. Morphologically O. kazantipica is
most similar to O. hafneriensis and O. neakameniensis:
color, much longer intercalary cells, and the shape and
dimensions of apical cells. Ukrainian species also differ
from already known representatives of the genus by
the appearance and width of trichomes, the length of
intercalary and apical cells.
In their ecology, both new species are terrestrial
xerophytes. On the marine beach, where they were
initially revealed, the biota is exposed to high solar
radiation and salinity of the environment; water stress
is mitigated by the proximity of the sea. For chalk
outсrops, where O. ucrainica is common, the main
limiting factor is the lack of moisture. It is logical to
assume that morphologically and in molecular features
Ukrainian species would be closer to the "desert"
group of Oculatella (O. atacamensis, O. coburnii,
O. mojaviensis, O. neakameniensis) than to species
from aquatic habitats (O. cataractarum Bohunická
et Johansen, O. hafneriensis, O. kauaiensis Miscoe
et Johansen). A comparative analysis of the main
morphological features of Oculatella species (Table 2)
shows that the width of the filaments of O. ucrainica
is indeed similar to the "desert" and differs from
Table 2. Morphological comparison of Oculatella ucrainica sp. nov. and O. kazantipica sp. nov. with known* Oculatella species**
Species
F
ila
m
en
t w
id
th
,
μm
S
h
ea
th
F
al
se
b
ra
n
ch
in
g
T
ri
ch
om
e
w
id
th
, μ
m
C
on
st
ri
ct
io
n
s
G
ra
n
ul
at
io
n
s
at
cr
os
sw
al
ls
N
ec
ri
di
a
C
el
l l
en
gt
h
, μ
m
A
pi
ca
l c
el
ls
w
id
th
/
le
n
gt
h
,
μm
H
ab
it
at
O. atacamensis 1.8–4.1 common rare 1.5–2.3 weak sometimes – 1.5–7.4
1.4–2.1 /
2.5–9.9
Soils and
under quartz
rocks in desert
O. coburnii 1.7–2.8 common rare 1.4–1.8 clear absent – 1.8–4.8
1.4–1.8 /
2.4–5.4
Granitic soil
in hot desert
O. mojaviensis 2.0–2.6 common rare 1.6–2.2
absent/
weak
sometimes + 1.5–5.0
1.4-2.0 /
2.4-6.8
Dolomitic soil
in hot desert
O. neakameniensis 1.2–4.1 common absent 1.2–1.7
absent/
weak
sometimes – 1.5–5.4
1.1–1.7 /
2.3–7.7
Semi-arid
volcanic soil
O. kazantipica
(1.3)1.5 –
5-7.5
common rare
1.1–1.3–
1.7
absent/
weak
frequently –
(2)–2.3–
4.7(7.5)
1.3–1.5 /
(4)5–7(8.7)
Conquina
beach
O. ucrainica
(1.5)2.5 –
(3.0)
common rare
(1.3)–
1.7–2.5
(3.0)
clear sometimes –
(1.3)1.7–
3.7(4.7)
1.3–1.7
(2.3)/(2.3)
3.3–6.7 (7.7)
Conquina
beach, chalk
outcrops
O. cataractarum 1.3–1.7 rare rare
0.8–1.3–
(1.7)
absent/
weak
frequently –
(1.4)–
1.6–6.8–
(8.7)
/2.1–7.7–
(12.8)
Dripping
sandstone
rocks
O. hafneriensis 1.4–2.4 common absent 1.1–1.9
absent/
weak
sometimes – 1.0–4.4
1.0–1.7 /
2.0–5.8
Lake benthos
O. kauaiensis 1.2–1.7 common absent 0.9–1.4
absent/
weak
absent – 1.0–4.4
0.9–1.5 /
1.3–7.8
Sea cave
* We did not include O. subterranea in the comparative table because of obvious morphological and ecological differences with
our strains. ** After Osorio-Santos et al., 2014.
516 Ukr. Bot. J., 2017, 74(6)
Fig. 4. Micrographs of new species of Oculatella; O. ucrainica sp. nov.: a–d – young filaments of strains KZ-5-4-1
(a–c) and KZ-12-1 (d) with clear photosensitive granules in terminal cells, e – old filament with narrow sheath
(KZ-5-4-1); O. kazantipica sp. nov. (KZ-19-s-2): f–h – young filaments with clear photosensitive granules in
terminal cells and narrow sheath (g), i–k – old filaments with wide and slightly lamellar sheaths. Scale 5 μm
517Укр. бот. журн., 2017, 74(6)
Fig. 5. Drawings of new species of
Oculatella. O. ucrainica sp. nov. (KZ-
5-4-1): a – young filaments, b – old
filament; O. kazantipica sp. nov. (KZ-
19-s-2): c – young filaments, d – old
filament. Scale 5 μm
Fig. 6. Transmission electron
micrographs of Oculatella
ucrainica: a, d – longitudinal
section of filaments, b, c –
cross sections of filaments;
a–c – strain KZ-5-4-1,
d – strain KZ-12-1. Strains
are characterized by parietal
thylakoids and the presence
of granules (marked G).
Scale 1 μm
518 Ukr. Bot. J., 2017, 74(6)
of coquina, clay and chalk outcrops, and hypolitically
under pieces of quartz.
Ty p e l o c a l i t y :The coast of the Sea of Azov,
vicinities of Kazantip Nature Reserve, Aqtash Lake spit.
I c o n o t y p e : Figs 4 a–c, e, 5 a, b.
H o l o t y p e here designated: KW-A 32375,
Herbarium of M.G. Kholodny Institute of Botany of
NAS of Ukraine.
R e f e r e n c e s t r a i n : KZ-5-4-1 (SAG 2563).
Additional strains: KZ-7-1-4, KZ-12-1, Vin-4-4-1.
Additional sampling localities: the coast of the Sea of
Azov, Kazantip Nature Reserve, Sharabay Bay. Kharkiv
Region, Dvorichansky District, vicinities of Petro-
Ivanivka village.
E t y m o l o g y : ucrainica = from Ukraine.
Oculatella kazantipica O.M. Vynogr. et Mikhailyuk
sp. nov.
D i a g n o s i s : Morphologically and phylogenetically
it is the most similar to O. hafneriensis and
O. neakameniensis, from which differs in higher degree of
sheath formation, false branching, granulations at cross
walls and longer intercalary cells, and by composition
and secondary structure of 16S-23S ITS region.
Thallus a thin film penetrating into the agar,
spreading diffusely from the center of thallus, blue-
green. Filaments weakly waved, rarely with false
branching or more than one trichome in common
sheath. Sheath nearly obligate, first thin and tightly
attached, (1.3)1.5–1.9 µm wide, in old cultures firm,
gradually expanded, sometimes lamellate, 5–7.5 µm
wide, colorless. Trichomes olive-green, (1.1)1.3–
1.7 µm wide, unconstricted to slightly constricted at
the cross walls (especially in young cultures) often
flanking with granules, lacking necridia, not attenuated
to the end. Cells consistently longer than wide, with
nongranular cytoplasm, with parietal thylakoids clearly
visible in the light microscope, (2)2.3–4.7(5) µm long,
in old cultures up to 7.5 µm long. Mature apical cells
elongated-conical, longer than vegetative cells, 1.3–
1.5 µm wide, (4.0)5.0–7.0(8.7) µm long, with a reddish-
orange spot in the apex of the cell. D1-D1′ helix of the
16S-23S ITS region 64 nucleotides long, with a large
subterminal bilateral bulge of 9 nucleotides. V2 helix 15
nucleotides long, with a terminal loop of 7 nucleotides.
Box-B with 34 nucleotides, with 6 nucleotides in the
terminal loop. V3 helix region with 53 nucleotides,
with a unilateral bulge on the 5′ side of the helix at
nucleotides.
common features are trichome width, lack of
constrictions at cross walls, shape and dimensions of
apical cells. O. kazantipica phylogenetically is close to
both mentioned above species (Fig. 2) and represents
similar secondary structure of 16S-23S ITS region,
especially close to unique V-2 helix of O. hafneriensis
(Fig. 3). O. neakameniensis is a terrestrial species isolated
from semiarid volcanic soil (Greece) and therefore
ecologically similar to our isolate. The phylogenic
position of O. hafneriensis between terrestrial species is
surprising because this species is inhabiting fresh waters
and occupies basic phylogenetic position among other
aquatic representatives in Osorio-Santos et al. (2014).
But O. neakameniensis, O. hafneriensis and our isolate
KZ-19-s-2 are close biogeographically because were
isolated in Europe and differ from other known species
found from tropical islands, North and South America.
O. hafneriensis were originally described from benthos of
a temperate lake in Austria (Osorio-Santos et al., 2014).
Taxonomic descriptions
Oculatella ucrainica O.M. Vynogr. et Mikhailyuk
sp. nov.
D i a g n o s i s : Morphologically and phylogenetically
is the most similar to O. coburnii, from which differs in
the higher degree of sheath formation, wider trichomes,
apical cells without irregular outgrowth and by
composition and secondary structure of 16S-23S ITS
region.
Thallus flat, thin, spreading diffusely from the center,
penetrating into the agar, blue-green. Filaments flexuous,
(1.5)1.9–2.5(3.0) µm wide, mostly unbranched. Sheath
very common, nearly obligate in older cultures, thin and
tightly attached when young, later distinctly widened,
colorless. Trichomes motile only in young state, olive-
green, (1.3)1.7–2.3(2.7) µm wide, clearly constricted at
cross walls (especially in young cultures) and sometimes
with granules, lacking necridia, not attenuated to the
end. Cells isodiametric to longer than wide, (1.3)1.7–
3.7(4.7) µm, with nongranular cytoplasm and parietal
thylakoids clearly visible in the light microscope. Mature
apical cells bluntly conical, longer than vegetative cells,
1.3–1.7(2.3) µm wide, (2.3)3.3–6.7 (7.7) µm long, with
a reddish-orange spot in the apex of the cell. D1-D1′
helix of the 16S-23S ITS region 64 nucleotides long,
with a large subterminal bilateral bulge of 9 nucleotides.
V2 helix with only 8 nucleotides. Box-B with 34
nucleotides, with 6 nucleotides in the terminal loop.
V3 helix with 52 nucleotides, with a unilateral bulge on
the 5′ side of the helix.
H a b i t a t : isolated from biological crusts dominated
by Nostoc edaphicum and Hassalia sp. on the surface
519Укр. бот. журн., 2017, 74(6)
REFERENCES
Akaike H. A new look at the statistical model identification.
IEEE Trans. Automat. Contr., 1974, 19(6): 716–723.
Bischoff H.W., Bold H.C. Phycological studies. IV. Some
soil algae from Enchanted Rock and related algal species.
Univ. Texas Publ., 1963, 6318: 1–95.
Byun Y., Han K. PseudoViewer3: generating planar draw-
ings of large-scale RNA structures with pseudoknots.
Bioinformatics, 2009, 25(11): 1435–1437.
Dulić T., Meriluoto J., Malešević T.P., Gajić V.,
Važić T., Tokodi N., Obreht I., Kostić B.,
Kosijer P., Khormali F., Svirčev Z. Cyanobacterial diversity
and toxicity of biocrusts from the Caspian Lowland loess
deposits, North Iran. Quat. Int., 2017, 429: 74–85
Holzinger A., Roleda M.Y., Lütz C. The vegetative arctic
green alga Zygnema is insensitive to experimental UV
exposure. Micron, 2009, 40: 831–838.
Katoh K., Standley D.M. MAFT Multiple Sequence
Alignment Software Version 7: improvements in
performance and usability. Mol. Biol. and Evol., 2013,
30(4): 772–780.
Marin B., Nowack E.C.M., Melkonian M. A plastid in the
making: evidence for a second primary endosymbiosis.
Protist, 2005, 156: 425–432.
Mikhailyuk T.I., Vinogradova O.N., Glaser K., Karsten U.
New taxa for the flora of Ukraine, in the context of
modern approaches to taxonomy of Cyanoprokaryota/
Cyanobacteria. Int. J. on Algae, 2016, 18(4): 301–320.
Osorio-Santos K., Pietrasiak N., Bohunická M.,
Miscoe L.H., Kováčik L., Martin M.P., Johansen J.R.
Seven new species of Oculatella (Pseudanabaenales,
Cyanobacteria): taxonomically recognizing cryptic diver-
sification. Eur. J. Phycol., 2014, 49(4): 450–470.
Ronquist F., Huelsenbeck J.R. MrBayes 3: Bayesian phylo-
genetic interference under mixed models. Bioinformatics,
2003, 19(12): 1572–1574.
Stanier R.Y., Kunisawa R., Mandel M., Cohen-Bazire G.
Purification and properties of unicellular blue-green
algae (order Chroococcales). Bacteriol. Rev., 1971, 35:
171–205.
Tamura K., Stecher G., Peterson D., Filipski A. MEGA6:
molecular evolutionary analysis version 6.0. Mol. Biol. and
Evol., 2013, 30(12): 2725–2729.
Wilmotte A., Van der Auwera G., De Wachter R. Structure
of the 16S ribosomal RNA of the thermophilic
cyanobacterium Chlorogloeopsis HTF (Mastigocladus
laminosus HTF’) strain PCC75 18, and phylogenetic
analysis. FEBS Lett., 1993, 317(1–2): 96–100.
Zammit G., Billi D., Albertano P. The subaerophytic cyano-
bacterium Oculatella subterranea (Oscillatoriales, Cyano-
phyceae) gen. et sp. nov.: a cytomorphological and mo-
lecular description. Eur. J. Phycol., 2012, 47: 341–354.
Zuker M. Mfold web server for nucleic acid folding and
hybridization prediction. Nucl. Acid Res., 2003, 31(13):
3406–3415.
Recommended for publication by Submitted 01.07.2017
P.M. Tsarenko
H a b i t a t : coquina beach exposed to direct sunlight,
in biological crusts with dominance of Microcoleus
vaginatus at seaside.
Ty p e l o c a l i t y : The coast of the Sea of Azov,
Kazantip Nature Reserve, Shyrokaya Bay.
I c o n o t y p e : Figs 4 f–k, 5 c, d.
H o l o t y p e here designated: KW-A 32376,
Herbarium of M.G. Kholodny Institute of Botany of
NAS of Ukraine.
R e f e r e n c e s t r a i n : KZ-19-s-2 (SAG 2567).
E t y m o l o g y : kazantipica = from the Cape
Kazantip.
In contrast to previous studies, which reported
Oculatella as a rare genus (Osorio-Santos et al., 2014),
we found this genus in over half of our soil crust samples
from the Sea of Azov coast and chalk outcrops in
Kharkiv Region. Recent studies suggest that Oculatella
might be even more widely distributed as it was found
in biological soil crust in Iran (Dulić et al., 2017).
From the isolated strains, we described two new species
after detailed investigations of their morphology,
phylogeny, and ultrastructure. Both, the morphological
and phylogenetic characterstics, indicate that the
new strains represent new species. This is strengthen
by the ecology and biogeography of the new strains,
both different to the previously describted Oculatella
species. It is interesting that type populations of these
new species were found on small territory of Kazantip
Nature Reserve and vicinities similar to the earlier
described species O. coburnii and O. mojaviensis found
also on a limited territory, in desert soils of California,
USA. Moreover, the terrestrial species O. kazantipica
is morphologically and genetically close to the fresh-
water European taxon O. hafneriensis.
Acknowledgements
The research was supported by a Georg-Forster Fellowship
of the Alexander von Humboldt Foundation (Alexander
von Humboldt Stiftung) to the second author. We
are grateful to Dr. Alla B. Gromakova, V.N. Karazin
National University, Ukraine, for the samples of
biological crusts collected in Kharkiv Region. We thank
Sabrina Obwegeser, Beatrix Jungwirth and Lisa Obwegs,
University of Innsbruck, Austria, for providing help
in the TEM investigations, Jeffrey R. Johansen, John
Carroll University, University Heights, USA, for providing
original sequence of Oculatella hafneriensis, Dr. Maike
Lorenz, University of Göttingen, Germany, for help during
strain deposition to SAG, as well as Eduard Demchenko,
M.G. Kholodny Institute of Botany of NASU, for help
during cultivation of Oculatella strains.
http://www.tandfonline.com/author/Osorio-Santos,+Karina
http://www.tandfonline.com/author/Pietrasiak,+Nicole
http://www.tandfonline.com/author/BohunickГЎ,+Markéta
http://www.tandfonline.com/author/Miscoe,+Laura+H
http://www.tandfonline.com/author/KovГЎДik,+Lubomir
http://www.tandfonline.com/author/Martin,+Michael+P
http://www.tandfonline.com/author/Johansen,+Jeffrey+R
http://www.tandfonline.com/author/Osorio-Santos,+Karina
520 Ukr. Bot. J., 2017, 74(6)
Виноградова О.М.1, Михайлюк Т.І.1, Глазер К.2,
Хольцингер А.3, Карстен У.2 Нові види роду Oculatella
(Synechococcales, Cyanobacteria) з наземних місцезростань
України. Укр. бот. журн., 2017, 74(6): 509–520.
1 Інститут ботаніки ім. М.Г. Холодного НАН України
вул. Терещенківська, 2, Київ 01004, Україна
2 Університет м. Росток, Інститут біологічних наук
Альберт Ейнштейн штрассе, 3, Росток D-18057,
Німеччина
3 Університет м. Інсбрук, кафедра ботаніки
Штернвартештрассе, 15, Інсбрук A-6020, Австрія
Описані нові для науки види з роду Oculatella Zammit,
Billi & Albertano: O. ucrainica sp. nov. та O. kazantipica
sp. nov., виділені з біологічних кірочок, відібраних на
ракушняковому пляжі біля Азовського моря (АР Крим),
а також на крейдяних та глинистих схилах у Харківській
області. Комплексне дослідження п'яти отриманих
штамів Oculatella показало, що фенотипично та
філогенетично вони відрізняються від усіх відомих видів
цього роду. На філогенетичному дереві, побудованому
на основі порівняння послідовностей генів 16S рРНК,
штами нових видів приєднались до вже відомих видів
Oculatella, які утворювали окремі лінії, при цьому один
з них (O. ucrainica) увійшов до групи засухостійких
наземних видів, а інший (O. kazantipica) потрапив до
однієї клади з терестріальним видом O. neakameniensis
Kováčik et Johansen та озерним O. hafneriensis Kováčik
& Johansen. Філогенетичний аналіз за ділянкою 16S
рРНК, зв'язаною з регіоном 16S-23S ITS, а також
вторинні структури найінформативніших хеліксів
16S-23S ITS підтвердили виділення нових видів, які
морфологічно також чітко відрізняються. Нитки
O. ucrainica вужчі (1,5–3,0 мкм), а трихоми ширші (1,3–
2,7 мкм), ніж у O. kazantipica (нитки 1,3–7,5 мкм шир.,
трихоми 1,1–1,7 мкм шир.), є відмінності у морфогенезі
піхов, перетягнутості трихомів та довжині клітин.
Oculatella ucrainica найбільш подібний до пустельного виду
O. coburnii Pietrasiak & Johansen, від якого відрізняється
інтенсивністю формування піхов, ширшими трихо-
мами, відсутністю неправильного виросту на кінцевих
клітинах, а також конфігурацією вторинної структури
регіону 16S-23S ITS. Oculatella kazantipica близька до
O. hafneriensis та O. neakameniensis, від яких відрізняється
за морфологією піхов, наявністю несправжнього
галуження, грануляціями біля поперечних перегородок,
більшою довжиною інтеркалярних клітин, та деталями
будови вториннної структури регіону 16S-23S ITS.
Ключові слова: Synechococcales, Oculatella ucrainica,
O. kazantipica, нові види, біологічні корочки, Україна,
молекулярна філогенія, 16S рРНК, 16S-23S ITS,
вторинна структура
Виноградова О.Н.1, Михайлюк Т.И.1, Глазер К.2,
Хольцингер А.3, Карстен У.2 Новые виды рода
Oculatella (Synechococcales, Cyanobacteria) из наземных
местообитаний Украины. Укр. бот. журн., 2017, 74(6):
509–520.
1 Институт ботаники им. Н.Г. Холодного НАН Украины
ул. Терещенковская, 2, Киев 01004, Украина
2 Университет г. Росток, Институт биологических наук
Альберт Эйнштейн штрассе, 3, Росток D-18057,
Германия
3 Университет г. Инсбрук, кафедра ботаники
Штернвартештрассе, 15, Инсбрук A-6020, Австрия
Описаны новые для науки виды из рода Oculatella
Zammit, Billi & Albertano: O. ucrainica sp. nov. и
O. kazantipica sp. nov., выделенные из биологических ко-
рочек, отобранных на ракушечниковом пляже у Азов-
ского моря (АР Крым), а также на меловых и глинистых
склонах в Харьковской обл. Комплексное исследова-
ние пяти полученных штаммов Oculatella показало, что
фенотипически и филогенетически они отличаются
от всех известных видов этого рода. На филогенетиче-
ском дереве, построенном на основе сравнения после-
довательностей генов 16S рРНК, штаммы новых ви-
дов присоединялись к уже известным видам Oculatella,
образующим отдельные линии, при этом один из них
(O. ucrainica) вошел в группу засухоустойчивых назем-
ных видов, а другой (O. kazantipica) попал в одну кладу с
наземным видом O. neakameniensis Kováčik et Johansen и
водным O. hafneriensis Kováčik & Johansen. Филогенети-
ческий анализ по участку 16S рРНК, связанному с реги-
оном 16S-23S ITS, а также вторичные структуры наибо-
лее информативных хеликсов 16S-23S ITS подтвердили
выделение новых видов, которые морфологически так-
же хорошо различимы между собой. Нити O. ucrainica
ýже (1,5–3,0 мкм), а трихомы шире (1,3–2,7 μm), чем у
O. kazantipica (нити 1,3–7,5 мкм шир., трихомы 1,1–
1,7 мкм шир.), отличия также касаются морфогенеза вла-
галища, перешнурованности трихомов и длины клеток.
Oculatella ucrainica наиболее сходен с пустынным видом
O. coburnii Pietrasiak & Johansen, от которого от-
личается интенсивностью формирования влага-
лища, более широкими трихомами, отсутстви-
ем неправильного выроста на конечных клетках,
а также конфигурацией вторичной структуры ре-
гиона 16S-23S ITS. Oculatella kazantipica близка к
O. hafneriensis и O. neakameniensis, от которых отличается
морфологией влагалища, наличием ложного ветвления,
грануляциями у поперечных перегородок, большей дли-
ной интеркалярных клеток и деталями строения вторич-
ной структуры региона 16S-23S ITS.
Ключевые слова: Synechococcales, Oculatella ucrainica,
O. kazantipica, новые виды, биологические корочки,
Украина, молекулярная филогения, 16S рРНК, 16S-23S
ITS, вторичная структура
Table E1. List of species and strains used for the 16S rRNA and 16S-23S ITS sequence comparisons
Species Strain
Accession number1
16S rRNA 16S-23S ITS region
Oculatella ucrainica sp. nov. KZ-5-4-1, SAG 2563 KY098843 MG652620
Oculatella ucrainica sp. nov. KZ-7-1-4 KY098844 MG652619
Oculatella ucrainica sp. nov. Vin-4-4-1 MG652618
Oculatella ucrainicasp. nov. KZ-12-1 MG652617
Oculatella kazantipica sp. nov. KZ-19-s-2, SAG 2567 MG652616
Oculatella hafneriensis Hindak 1982/12 MG6526212
Oculatella atacamensis ATA3-4Q-CV5 KF761582
Oculatella atacamensis ATA2-1-CV24 – KF761575
Oculatella mojaviensis CMT-3BRINC87 KF761572
Oculatella mojaviensis CMT-3BRINC84 – KF761571
Oculatella coburnii WJT66-NPBG6A KF761586
Oculatella coburnii WJT36-NPbg13 – HM018687
Oculatella neakameniensis Kovacik 1990/54 EU528672
Oculatella neakameniensis Kovacik 1990/37 – EU528671
Oculatella sp. LLi18 DQ786166
Oculatella kauaiensis HA4348 LM1 KF417431
Oculatella subterranea VRUC135 X84809
Oculatella cataractarum GSE-PSE-MK52-07L KF761583
Leptolyngbya sp. Uher 2000/2452 HM018689
Leptolyngbya frigida ANT.L52.2 AY493575 –
Leptolyngbya frigida ANT.L70.1 AY493574 –
Pseudanabaenales cyanobacterium WJT40-NPBG3 KJ939003 –
Leptolyngbya sp. GSE-PSE28-08A HM018691 –
Leptolyngbya compacta GSE-PSE28-08A HQ132933 –
Phormidium sp. PMC301.07 GQ859651 –
Schizothrix arenaria HA4233-MV5 JN385286 –
Leptolyngbya antarctica ANT.LG2.5 AY493603 –
Leptolyngbya antarctica ANT.L18.1 AY493607 –
Leptolyngbya antarctica ANT.L67.1 AY493572 –
Leptolyngbya laminosa ETS-08 FM210757 –
Leptolyngbya tenerrima AF218368 UTCC 77 –
Leptolyngbya boryana PCC 6306 EF429289 –
Leptolyngbya boryana CCAP 1446/2 HF678483 –
Leptolyngbya foveolarum VP1-08 FR798945 –
Leptolyngbya sp. HA4236-MV8 KJ939018 –
Pseudophormidium sp. WJT71-NPBG25 KJ939062 –
Pseudophormidium sp. ATA5-5-1-KO9 KC311902 –
Alkaline mapantanalense CENA531 KF246497 –
Alkaline mapantanalense CENA530 KF246496 –
Phormidesmis priestleyi ANT.L66.1 AY493581 –
Phormidesmis priestleyi ANT.LG2.4 AY493580 –
Phormidesmis sp. WJT36-NPBG15 KJ939033 –
Leptolyngbya sp. HA4254-MV3 KJ939090 –
Leptolyngbya sp. HA4230-MV4 KC525093 –
Leptolyngbya frigida ANT.L52B.3 AY493612 –
Leptolyngbya frigida ANT.L64B.1 AY493577 –
Leptolyngbya tenuis PMC304.07 GQ859652 –
Pseudanabaena tremula UTCC 471 AF218371 –
Pantanaline marosaneae CENA539 KF246503 –
Pantanaline marosaneae CENA521 KF246488 –
Nodosilinea epilithica Kovacik 1998/7 HM018677 –
Nodosilinea epilithica Kovacik 1990/52 HM018679 –
Leptolyngbya margaretheana 1T12 FR798934 –
Nodosilinea nodulosa UTEX 2910 KF307598 –
Nodosilinea conica SEV4-5-c1 EU528667 –
Nodosilinea sp. Prim-5-5 KY098847 –
Nodosilinea bijugata Kovacik 1986/5a EU528669 –
Oscillatoria neglecta AM M-82 AB003168 –
Leptolyngbya subtilissima EcFYyyy700 KC463197 –
Phormidesmis priestleyi ANT.LACV5.1 AY493586 –
Phormidesmis priestleyi ANT.LPR2.5 AY493620 –
Pseudophormidium sp. ANT.LPE.3 AY493587 –
Trichocoleus desertorum ATA4-8-CV2 KF307604 –
Trichocoleus badius CRS-1 EF429297 –
Pseudanabaena minima GSE-PSE20-05C HQ132935 –
Limnothrix redekei CCAP 1443/1 AJ580007 –
Phormidium mucicola IAM M-221 AB003165 –
Gloeobacter violaceus PCC 7421 NR074282 –
1Accession numbers marked with Bold are newly sequenced cyanobacteria.
2 Sequence of Oculatella hafneriensis used in the study was provided by Jeffrey R. Johansen (John Carroll University,
University Heights, USA) via personal communication and submitted by us to NCBI.
Electronic Supplement to: Vinogradova & al. New species of Oculatella...
Ukr. Bot. J., 2017, 74(6)
e1
|