Simultaneous thermodynamic and dynamical characterisation using in situ calorimetry with neutron spectroscopy

Both Differential Scanning Calorimetry (DSC) and Quasi-elastic Neutron Scattering (QENS) are powerful analytical tools actively used in studies of phase transitions in complex solid and liquid systems. DSC is typically used to map phase transition temperatures and identify sample states, and QENS p...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Fornalski, D., García Sakai, V., Postorino, S., Silverwood, I., Goodway, C., Bones, J., Kirichek, O., Fernandez-Alonso, F.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2019
Назва видання:Физика низких температур
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/175952
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Simultaneous thermodynamic and dynamical characterisation using in situ calorimetry with neutron spectroscopy / D. Fornalski, V. García Sakai, S. Postorino, I. Silverwood, C. Goodway, J. Bones, O. Kirichek, F. Fernandez-Alonso // Физика низких температур. — 2019. — Т. 45, № 3. — С. 332-338. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-175952
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1759522025-02-09T21:50:45Z Simultaneous thermodynamic and dynamical characterisation using in situ calorimetry with neutron spectroscopy Одночасна термодинамічна та динамічна характеризація методами in situ калориметрії та нейтронної спектроскопії Одновременная термодинамическая и динамическая характеризация методами in situ калориметрии и нейтронной спектроскопии Fornalski, D. García Sakai, V. Postorino, S. Silverwood, I. Goodway, C. Bones, J. Kirichek, O. Fernandez-Alonso, F. Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018) Both Differential Scanning Calorimetry (DSC) and Quasi-elastic Neutron Scattering (QENS) are powerful analytical tools actively used in studies of phase transitions in complex solid and liquid systems. DSC is typically used to map phase transition temperatures and identify sample states, and QENS provides information on the molecular scale dynamical motions, such as molecular self-diffusion or glassy dynamics, associated with such transitions. Both techniques provide highly valuable complementary information about the sample and in many cases it would be advantageous to measure in parallel with a view to linking the two observables. The biggest challenge is that the cell design which differs greatly between the two methods. Here we present a first attempt at designing a cryogenic system which will allow the simultaneous measurement of calorimetric transitions and QENS measurements, as tested on the neutron spectrometer IRIS at ISIS neutron scattering facility. The system temperature range is from 10 K to 300 K. We present and discuss the initial design of the system, preliminary test results, current challenges and limitations, and future directions. Диференційна скануюча калориметрія (DSC) та квазіпружне розсіяння нейтронів (QENS) — потужні аналітичні інструменти, які активно використовуються при вивченні фазових переходів у складних твердих і рідких системах. DSC зазвичай використовується для знаходження температур фазового переходу та ідентифікації станів зразка, а QENS надає інформацію про пов'язану з фазовими переходами динаміку явищ молекулярного масштабу таких, як молекулярна самодифузія або склування. Обидва методи надають можливість отримання дуже цінної взаємодоповнюючої інформації про зразок, і в багатьох випадках доцільно паралельно виконувати вимірювання з метою об'єднання двох спостережень загальним трактуванням. Суттєвою проблемою є вибір конструкції комірки, вимоги до якої для цих двох методів різні. У цій роботі ми представляємо першу спробу створення кріогенної системи, що дозволяє одночасно проводити калориметричні вимірювання та вимірювання QENS, а потім зіставляти результати обох спостережень. Дослідження виконано на нейтронному спектрометрі IRIS та установці розсіювання нейтронів ISIS, робочий діапазон температур системи складає від 10 до 300 К. У роботі наведено та обговорено вихідну конструкцію системи, попередні результати випробувань, поточні проблеми та недоліки, а також перспективи застосування. Дифференциальная сканирующая калориметрия (DSC) и квазиупругое рассеяние нейтронов (QENS) являются мощными аналитическими инструментами, активно используемыми при изучении фазовых переходов в сложных твердых и жидких системах. DSC обычно используется для нахождения температур фазового перехода и идентификации состояний образца, а QENS предоставляет информацию о связанной с фазовыми переходами динамике явлений молекулярного масштаба таких, как молекулярная самодиффузия или стеклование. Оба метода дают возможность получения очень ценной взаимодополняющей информации об образце, и вомногих случаях целесообразно параллельно выполнять измерения с целью объединения двух наблюдений общей трактовкой. Существенной проблемой является выбор конструкции ячейки, требования к которой для этих двух методов различны. В этой работе мы представляем первую попытку создания криогенной системы, позволяющей одновременно проводить калориметрические измерения и измерения QENS, а затем сопоставлять результаты обоих наблюдений. Исследования выполнены на нейтронном спектрометре IRIS и установке рассеяния нейтронов ISIS, рабочий диапазон температур системы составляет от 10 до 300 К. В работе представлены и обсуждены исходная конструкция системы, предварительные результаты испытаний, текущие проблемы и недостатки, а также перспективы применения. We would like to thank ISIS colleagues for support and contribution to the project. 2019 Article Simultaneous thermodynamic and dynamical characterisation using in situ calorimetry with neutron spectroscopy / D. Fornalski, V. García Sakai, S. Postorino, I. Silverwood, C. Goodway, J. Bones, O. Kirichek, F. Fernandez-Alonso // Физика низких температур. — 2019. — Т. 45, № 3. — С. 332-338. — Бібліогр.: 8 назв. — англ. 0132-6414 https://nasplib.isofts.kiev.ua/handle/123456789/175952 en Физика низких температур application/pdf Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018)
Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018)
spellingShingle Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018)
Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018)
Fornalski, D.
García Sakai, V.
Postorino, S.
Silverwood, I.
Goodway, C.
Bones, J.
Kirichek, O.
Fernandez-Alonso, F.
Simultaneous thermodynamic and dynamical characterisation using in situ calorimetry with neutron spectroscopy
Физика низких температур
description Both Differential Scanning Calorimetry (DSC) and Quasi-elastic Neutron Scattering (QENS) are powerful analytical tools actively used in studies of phase transitions in complex solid and liquid systems. DSC is typically used to map phase transition temperatures and identify sample states, and QENS provides information on the molecular scale dynamical motions, such as molecular self-diffusion or glassy dynamics, associated with such transitions. Both techniques provide highly valuable complementary information about the sample and in many cases it would be advantageous to measure in parallel with a view to linking the two observables. The biggest challenge is that the cell design which differs greatly between the two methods. Here we present a first attempt at designing a cryogenic system which will allow the simultaneous measurement of calorimetric transitions and QENS measurements, as tested on the neutron spectrometer IRIS at ISIS neutron scattering facility. The system temperature range is from 10 K to 300 K. We present and discuss the initial design of the system, preliminary test results, current challenges and limitations, and future directions.
format Article
author Fornalski, D.
García Sakai, V.
Postorino, S.
Silverwood, I.
Goodway, C.
Bones, J.
Kirichek, O.
Fernandez-Alonso, F.
author_facet Fornalski, D.
García Sakai, V.
Postorino, S.
Silverwood, I.
Goodway, C.
Bones, J.
Kirichek, O.
Fernandez-Alonso, F.
author_sort Fornalski, D.
title Simultaneous thermodynamic and dynamical characterisation using in situ calorimetry with neutron spectroscopy
title_short Simultaneous thermodynamic and dynamical characterisation using in situ calorimetry with neutron spectroscopy
title_full Simultaneous thermodynamic and dynamical characterisation using in situ calorimetry with neutron spectroscopy
title_fullStr Simultaneous thermodynamic and dynamical characterisation using in situ calorimetry with neutron spectroscopy
title_full_unstemmed Simultaneous thermodynamic and dynamical characterisation using in situ calorimetry with neutron spectroscopy
title_sort simultaneous thermodynamic and dynamical characterisation using in situ calorimetry with neutron spectroscopy
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2019
topic_facet Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018)
url https://nasplib.isofts.kiev.ua/handle/123456789/175952
citation_txt Simultaneous thermodynamic and dynamical characterisation using in situ calorimetry with neutron spectroscopy / D. Fornalski, V. García Sakai, S. Postorino, I. Silverwood, C. Goodway, J. Bones, O. Kirichek, F. Fernandez-Alonso // Физика низких температур. — 2019. — Т. 45, № 3. — С. 332-338. — Бібліогр.: 8 назв. — англ.
series Физика низких температур
work_keys_str_mv AT fornalskid simultaneousthermodynamicanddynamicalcharacterisationusinginsitucalorimetrywithneutronspectroscopy
AT garciasakaiv simultaneousthermodynamicanddynamicalcharacterisationusinginsitucalorimetrywithneutronspectroscopy
AT postorinos simultaneousthermodynamicanddynamicalcharacterisationusinginsitucalorimetrywithneutronspectroscopy
AT silverwoodi simultaneousthermodynamicanddynamicalcharacterisationusinginsitucalorimetrywithneutronspectroscopy
AT goodwayc simultaneousthermodynamicanddynamicalcharacterisationusinginsitucalorimetrywithneutronspectroscopy
AT bonesj simultaneousthermodynamicanddynamicalcharacterisationusinginsitucalorimetrywithneutronspectroscopy
AT kiricheko simultaneousthermodynamicanddynamicalcharacterisationusinginsitucalorimetrywithneutronspectroscopy
AT fernandezalonsof simultaneousthermodynamicanddynamicalcharacterisationusinginsitucalorimetrywithneutronspectroscopy
AT fornalskid odnočasnatermodinamíčnatadinamíčnaharakterizacíâmetodamiinsitukalorimetríítaneitronnoíspektroskopíí
AT garciasakaiv odnočasnatermodinamíčnatadinamíčnaharakterizacíâmetodamiinsitukalorimetríítaneitronnoíspektroskopíí
AT postorinos odnočasnatermodinamíčnatadinamíčnaharakterizacíâmetodamiinsitukalorimetríítaneitronnoíspektroskopíí
AT silverwoodi odnočasnatermodinamíčnatadinamíčnaharakterizacíâmetodamiinsitukalorimetríítaneitronnoíspektroskopíí
AT goodwayc odnočasnatermodinamíčnatadinamíčnaharakterizacíâmetodamiinsitukalorimetríítaneitronnoíspektroskopíí
AT bonesj odnočasnatermodinamíčnatadinamíčnaharakterizacíâmetodamiinsitukalorimetríítaneitronnoíspektroskopíí
AT kiricheko odnočasnatermodinamíčnatadinamíčnaharakterizacíâmetodamiinsitukalorimetríítaneitronnoíspektroskopíí
AT fernandezalonsof odnočasnatermodinamíčnatadinamíčnaharakterizacíâmetodamiinsitukalorimetríítaneitronnoíspektroskopíí
AT fornalskid odnovremennaâtermodinamičeskaâidinamičeskaâharakterizaciâmetodamiinsitukalorimetriiineitronnoispektroskopii
AT garciasakaiv odnovremennaâtermodinamičeskaâidinamičeskaâharakterizaciâmetodamiinsitukalorimetriiineitronnoispektroskopii
AT postorinos odnovremennaâtermodinamičeskaâidinamičeskaâharakterizaciâmetodamiinsitukalorimetriiineitronnoispektroskopii
AT silverwoodi odnovremennaâtermodinamičeskaâidinamičeskaâharakterizaciâmetodamiinsitukalorimetriiineitronnoispektroskopii
AT goodwayc odnovremennaâtermodinamičeskaâidinamičeskaâharakterizaciâmetodamiinsitukalorimetriiineitronnoispektroskopii
AT bonesj odnovremennaâtermodinamičeskaâidinamičeskaâharakterizaciâmetodamiinsitukalorimetriiineitronnoispektroskopii
AT kiricheko odnovremennaâtermodinamičeskaâidinamičeskaâharakterizaciâmetodamiinsitukalorimetriiineitronnoispektroskopii
AT fernandezalonsof odnovremennaâtermodinamičeskaâidinamičeskaâharakterizaciâmetodamiinsitukalorimetriiineitronnoispektroskopii
first_indexed 2025-12-01T04:16:55Z
last_indexed 2025-12-01T04:16:55Z
_version_ 1850278010303807488
fulltext Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3, pp. 332–337 Simultaneous thermodynamic and dynamical characterisation using in situ calorimetry with neutron spectroscopy D. Fornalski1, V. García Sakai1, S. Postorino2, I. Silverwood1, C. Goodway1, J. Bones1, O. Kirichek1, and F. Fernandez-Alonso1 1ISIS, STFC, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK E-mail: damian.fornalski@stfc.ac.uk 2University of Rome, Tor Vergata, Italy Received October 24, 2018 Both Differential Scanning Calorimetry (DSC) and Quasi-elastic Neutron Scattering (QENS) are powerful analytical tools actively used in studies of phase transitions in complex solid and liquid systems. DSC is typical- ly used to map phase transition temperatures and identify sample states, and QENS provides information on the molecular scale dynamical motions, such as molecular self-diffusion or glassy dynamics, associated with such transitions. Both techniques provide highly valuable complementary information about the sample and in many cases it would be advantageous to measure in parallel with a view to linking the two observables. The biggest challenge is that the cell design which differs greatly between the two methods. Here we present a first attempt at designing a cryogenic system which will allow the simultaneous measurement of calorimetric transitions and QENS measurements, as tested on the neutron spectrometer IRIS at ISIS neutron scattering facility. The system temperature range is from 10 K to 300 K. We present and discuss the initial design of the system, preliminary test results, current challenges and limitations, and future directions. Keywords: neutron spectroscopy, calorimetry, simultaneous thermodynamic and dynamical characterisation, quasi-elastic neutron scattering. 1. Introduction In recent years the popularity of analytical tools in the area of cryocrystal research has been rapidly growing. In situ and in operando techniques with neutron measure- ments are also becoming more popular. Two of the meth- ods, Differential Scanning Calorimetry (DSC) and Quasi- elastic Neutron Scattering (QENS) [1] have attracted par- ticular interest because of high sensitivities and relatively short time required by complete measurements. In addi- tion, these two methods are fundamentally complimentary because DSC is typically used to map phase transition temperatures and identify sample states, and QENS pro- vides information on the nanoscopic scale dynamical mo- tions, such as molecular self-diffusion [2] or glassy dynam- ics, associated with such transitions. The first system where DSC was combined with neu- tron measurements was in the area of Small Angle Neutron Scattering (SANS), which measures structures in materials in the range of 1–100 nm [3]. In this case the small sample size and the simple transmission geometry and sample ar- rangement in the neutron beam, significantly simplifies the design of an in situ calorimeter. In this paper, we present results of the first in situ calo- rimeter which will allow the simultaneous measurement of calorimetric transitions and QENS. The design is completely different to that used with SANS and much more challeng- ing to conceive. The system has been tested on the neutron spectrometer IRIS at ISIS neutron scattering facility [4]. The operating temperature range is 10 K to 300 K, as it is to be used with the standard IRIS cryogenic system. We present and discuss an initial design of the system, preliminary test results, current challenges and limitations, and directions for its further development. Between the different existing calorimetry methods, DSC has been chosen as method for the design, as it is the most commonly used laboratory tool used in the areas of science of relevance. Various challenges were faced considering simultaneous measurements with QENS. Firstly, commercially available DSC equipment typically requires very small sample sizes, milligrams including the sample container, due to a need of © D. Fornalski, V. García Sakai, S. Postorino, I. Silverwood, C. Goodway, J. Bones, O. Kirichek, and F. Fernandez-Alonso, 2019 Simultaneous thermodynamic and dynamical characterisation using in situ calorimetry with neutron spectroscopy achieving accurate and homogeneous temperature distri- bution across the sample. Sample sizes required for neutron spectroscopy are at least two orders of magnitude bigger, due to typical neutron beam sizes being of the order of cen- timeters and the sample container design having to with- stand typical geometrical and sample environment con- straints, resulting in total sample masses of the order of tens of grams. Secondly, in order to achieve temperatures in the range of 10–300 K, which is typical for QENS measure- ments, the common method is to use a closed-cycle refriger- ator based on compressed helium. This requires evacuation of He gas environment around the sample. Thirdly, sample geometry is also different, with QENS spectroscopy detec- tors typically covering ~ 20–160 degree and thus favouring a cylindrical geometry. Fourthly, of crucial importance for QENS measurements is the need for an annular geometry where the annular gap is typically small (from 0.1 mm to 1 mm) to avoid multiple scattering events. Finally, the sam- ple container material is the same, typically aluminium, as it offers very good thermal conductivity and is almost trans- parent to the neutrons. In addition, the neutron scattering measurement requires minimal extra material around the sample to avoid contaminating scattering signals. To our knowledge, there is no other known sample cell design that allows the combination of QENS and DSC. In this paper we describe an initial cell design and show preliminary thermo- dynamic results, which point towards a working prototype. 2. Design The type of experimental samples imposes limitations on the choice of cell design. A number of considered po- tential samples are volatile liquids. This, combined with the requirement of vacuum environment imposes a need for vacuum tight container, as the calorimeter is expected to work with standard equipment, namely 100 mm center stick and top loading cryocooler (CCR) [5]. For a good and accurate calorimeter, there is a need to provide a homoge- nous temperature environment for both sample cell and reference cell. The presence of ionising radiation limits the choice of materials in the proximity of neutron beam. However, even more importantly, transmission of the neu- trons is critical for an optimal design, so that the scattering signal arising from the cell material does not dominate the observable neutron signal. Instead, it should be the sample signal which dominates the scattering signal. Therefore both sample and reference cell material has to be chosen to be “neutron friendly”. In addition, a critical parameter for the chosen calorimetry method is that the mass ratio be- tween the sample and the sample cell is kept as small as possible, to resolve the calorimetric signal. The calorimeter design consists of a sample and a refer- ence cell (Fig. 1) that are connected through good conduct- ance thermal link to the CCR. Helium exchange gas is used within the CCR chamber to provide additional thermal sup- port via convection. The sample and reference cells are con- nected to homogenous temperature thermal link with CCR via weak thermal links. The design of the cells is partially derived as a result of manufacturing challenges in traditional machining/welding processes imposed by cell’s design re- quirements. A 3D printing Selective Laser Sintering (SLS) method has been chosen as method for creating the cell. The sample and reference cells have been designed to have annular shape (Fig. 2) with 0.5 mm sample gap and 0.5 mm cell wall thickness (currently limit for manufactur- ing method used), to be used only for liquids. The sample is filled through the top and fills the 0.5 mm gap (shown in black in Fig. 2). The cells are terminated from both ends with hollow conical shapes for ease of sample load- ing/unloading and cell cleaning. This allows for substantial reduction of the size of the sealing flanges in comparison to the cells used for standard QENS measurements on IRIS. The cell manufactured as per above drawing reduces the critical parameter of cell to sample volume ratio (trans- lated to thermal mass) to an approximate value of 3, whereas for standard QENS cells it is closer to 10. Fig. 1. Conceptual sketch of an in situ calorimeter for QENS meas- urements: vacuum/exchange gas (1); temperature sensors (2); thermal anchor (3); thermal links (4); empty/reference cell (5); annular cell with sample (6); individual heaters (7); weak thermal links (8); neutron beam line (9); CCR (10). Fig. 2. Design of 3D printed in situ DSC/QENS cell. Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3 333 D. Fornalski, V. García Sakai, S. Postorino, I. Silverwood, C. Goodway, J. Bones, O. Kirichek, and F. Fernandez-Alonso As previously mentioned, the material used for the cells needs to be neutronically compatible (e.g., in terms of its “transparency”). The cell has been made of laser sintered AlSi10Mg a commercially available material. The diffrac- tion pattern (Fig. 3) was measured on IRIS and compared with the standard annular IRIS cell made of an aluminium alloy. The resulting patterns are shown in Fig. 3 and show that the signals are very similar, except that the calorimeter cells have some Bragg peaks arising from the Si in the cell material. The contribution to the signal from this is small and thus the chosen material is deemed good for the set-up. Most of all the remaining parts of the in situ DSC assem- bly are machined of aluminium alloy, except of PTFE baffle rings (see Fig. 4). Weak thermal links between sam- ple/reference cells and thermal anchor are machined of G10 resin for small thermal conductivity reasons. The DSC calo- rimeter assembly is attached to a standard 100 mm centre stick (as shown in Fig. 4). Heaters are mounted on the sur- face and sensors are inserted to 3D printed pockets on coni- cal part of the cans. Top and bottom parts of the cells have capability of being heated and temperature monitored. 3. Preliminary results Initial tests were performed using two common glass- forming liquids, glycerol and toluene. Once the system is cooled and thermally equilibrated in the CCR, a measure- ment is done by heating both sample and reference cells independently with a set value of the ramp rate, which is the same for both, in degrees per minute. The difference in heat output between sample and reference cells is directly proportional to the enthalpy change of the sample includ- ing any phase change. An important part for achieving a good control of the system is minimizing the temperature difference between sample and reference cells, achievable with the two heater design. Figure 5 shows recorded tem- perature differences between extreme ends of the setup, namely between sample cell’s bottom sensor and reference cell’s top sensor. Both graphs are for 1 K/min temperature ramp rate. The graph Fig. 5(a) is for glycerol and Fig. 5(b) is for toluene. Just from recording the changes in tempera- ture, transitions in the liquids are already visible, one for Fig. 3. (Color online) Diffraction patterns of 3D-printed sample cell. Black shows the empty CCR, red is the standard IRIS annu- lar cell, and green shows the 3D-printed cell. Fig. 4. DSC assembly 3D image (left) and real system mounted on the CCR stick (right). Fig. 5. Temperature difference between sample cell’s bottom sen- sor and reference cell’s top sensor for glycerol (a), and toluene (b). Temperature ramp rate is 1 K/min. 334 Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3 Simultaneous thermodynamic and dynamical characterisation using in situ calorimetry with neutron spectroscopy glycerol at around 190 K [6] and three for toluene 117 K [7], 148 K [8], 178 K [8]. All agree nicely with what is expected for these liquids. A much more accurate reading for the DSC signal is through the measurement of changes in the heater output (as a current). This is shown in Fig. 6 for the same liquids; the transitions are visible as before. This set-up is able to pick-up the smaller glass transitions in addition to larger crystallization and melting first order transition. For comparison, DSC signals from an industry standard TA2000 Instruments DSC are shown in Fig. 6, where the glass transition for glycerol 190 K [6] and to- luene 117 K [8] are clearly seen. 4. Discussion The developed sample cell has its limitations regarding what types of samples can be used and in what regimes. Firstly, due to small opening for sample loading (essen- tial for sealing and reduced weight) in the developed cell, only liquid samples are feasible and highly viscous liquids are restricted (although loading with evacuated cell works with glycerol — relatively viscous liquid). An alternative solution would have to be developed for powder samples. Secondly, the current sample cell design allows for measurements in temperature range 10–300 K. Due to the manufacturing method, the cell cannot be pressure rated (pressure system regulations do not allow yet for 3D printed equipment being used as pressure vessels), therefore heating the sample can only be considered for a temperature range not approaching the boiling point of the sample. Moreover, the sealing method for the sample cell is based on indium wire, therefore temperature limit for that is set to be 373 K. Modifications (machining of sealing surface) to the sample cell would be required for implementing an alternative seal- ing method. Thirdly, QENS is typically used to measure the dynam- ics of hydrogenated materials which commonly require a sample thickness of 0.1 mm. The design does not currently allow this, but is ideally suited for deuterated materials or for hydrogenated components in deuterated solution. One good example is for use with amphiphilic molecule self- assemblies in D2O (e.g., surfactant micelles or model lipid membranes). Lastly, the sample geometry, thickness, materials, may vary due to scientific requirements; therefore new cell de- sign may be required. Fig. 6. Preliminary glass transition results (a), (c) in comparison with TA2000 Instruments DSC Industry standard test results (b), (d). Current subtraction refsample ,I I I∆ = − A. Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3 335 D. Fornalski, V. García Sakai, S. Postorino, I. Silverwood, C. Goodway, J. Bones, O. Kirichek, and F. Fernandez-Alonso There are also limitations with the system developed with regards of control. Initial QENS+DSC measurements show a loss in DSC sensitivity owing to the measurement methods used for QENS. While the data shown for the DSC proof of concept is based on a continuous tempera- ture ramp and the measurement of the current every few seconds, the standard neutron ramp is based on a ‘step and wait/count’ ramp where the wait/count step is of the order of 10–15 mins to achieve enough statistical accuracy. Fur- thermore, standardised calibration scans of the equipment may be required for more accurate results. Also, control algorithm/software development is required for convenient use of the equipment as part of the routine neutron user service. 5. Conclusions The DSC system developed in its current design allows thermodynamic measurements and is compatible with neutronic measurements (sample size and cell material). Further developments are required to couple the system with QENS measurements and extend to a range of sample types, as currently it is only suitable for non-viscous liquids. Acknowledgements We would like to thank ISIS colleagues for support and contribution to the project. _______ 1. M. Bée, Quasi-elastic Neutron Scattering Principles and Application in Solid State Chemistry, Biology and Materials Science, Adam Hilger (1988). 2. Dynamics of Soft Matter: Neutron Applications, Victoria Garcia Sakai, Christiane Alba-Simionesco, and Sow Hsin Chen (eds.), New York (2012). 3. S.A. Pullen, N. Booth, S.R. Olsen, B. Day, F. Franceschini, D. Mannicke, and E.P. Gilbert, Sci. Technol. 25, 055606 (2014). 4. C.J. Carlile and M.A. Adams, Physica B 182, 431 (1992). 5. Beth Evans, Richard Down, Jeff Keeping, Oleg Kirichek, and Zoe Bowden, Sci. Technol. 19, 034018 (2008). 6. W. Zheng and S.L. Simon, J. Chem. Phys. 127, 194501 (2007). 7. O. Yamamuro, I. Tsukushi, A. Lindqvist, S. Takahara, M. Ishikawa, and T. Matsuo, J. Phys. Chem. B 102, 1605 (1998). 8. Deepanjan Bhattacharya and Vlad Sadtchenko, J. Chem. Phys. 141, 094502 (2014). ___________________________ Одночасна термодинамічна та динамічна характеризація методами in situ калориметрії та нейтронної спектроскопії D. Fornalski, V. García Sakai, S. Postorino, I. Silverwood, C. Goodway, J. Bones, O. Kirichek, F. Fernandez-Alonso Диференційна скануюча калориметрія (DSC) та квазі- пружне розсіяння нейтронів (QENS) — потужні аналітичні інструменти, які активно використовуються при вивченні фазових переходів у складних твердих і рідких системах. DSC зазвичай використовується для знаходження температур фазового переходу та ідентифікації станів зразка, а QENS надає інформацію про пов'язану з фазовими переходами ди- наміку явищ молекулярного масштабу таких, як молекулярна самодифузія або склування. Обидва методи надають можли- вість отримання дуже цінної взаємодоповнюючої інформації про зразок, і в багатьох випадках доцільно паралельно вико- нувати вимірювання з метою об'єднання двох спостережень загальним трактуванням. Суттєвою проблемою є вибір кон- струкції комірки, вимоги до якої для цих двох методів різні. У цій роботі ми представляємо першу спробу створення крі- огенної системи, що дозволяє одночасно проводити калори- метричні вимірювання та вимірювання QENS, а потім зістав- ляти результати обох спостережень. Дослідження виконано на нейтронному спектрометрі IRIS та установці розсіювання нейтронів ISIS, робочий діапазон температур системи скла- дає від 10 до 300 К. У роботі наведено та обговорено вихідну конструкцію системи, попередні результати випробувань, поточні проблеми та недоліки, а також перспективи застосу- вання. Ключові слова: нейтронна спектроскопія, калориметрія, од- ночасна термодинамічна та динамічна характеризація. Одновременная термодинамическая и динамическая характеризация методами in situ калориметрии и нейтронной спектроскопии D. Fornalski, V. García Sakai, S. Postorino, I. Silverwood, C. Goodway, J. Bones, O. Kirichek, F. Fernandez-Alonso Дифференциальная сканирующая калориметрия (DSC) и квазиупругое рассеяние нейтронов (QENS) являются мощ- ными аналитическими инструментами, активно используе- мыми при изучении фазовых переходов в сложных твердых и жидких системах. DSC обычно используется для нахождения температур фазового перехода и идентификации состояний образца, а QENS предоставляет информацию о связанной с фазовыми переходами динамике явлений молекулярного масштаба таких, как молекулярная самодиффузия или стек- лование. Оба метода дают возможность получения очень ценной взаимодополняющей информации об образце, и во 336 Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3 https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjVk-S2q_ffAhXjk4sKHWRVAnMQFjAAegQIBBAB&url=https%3A%2F%2Fwww.springer.com%2Fla%2Fbook%2F9781461407263&usg=AOvVaw0hYIcKMNYgkxNETxBcHaeF https://doi.org/10.1016/0921-4526(92)90047-V https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjtk8OLrPffAhUFtIsKHSrWBk8QFjAAegQIAxAB&url=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F30417084_Cryo-free_low_temperature_sample_environment_based_on_pulse_tub https://doi.org/10.1063/1.2793787 https://doi.org/10.1021/jp973439v https://doi.org/10.1063/1.4893716 https://doi.org/10.1063/1.4893716 Simultaneous thermodynamic and dynamical characterisation using in situ calorimetry with neutron spectroscopy многих случаях целесообразно параллельно выполнять изме- рения с целью объединения двух наблюдений общей трак- товкой. Существенной проблемой является выбор конструк- ции ячейки, требования к которой для этих двух методов различны. В этой работе мы представляем первую попытку создания криогенной системы, позволяющей одновременно проводить калориметрические измерения и измерения QENS, а затем сопоставлять результаты обоих наблюдений. Иссле- дования выполнены на нейтронном спектрометре IRIS и ус- тановке рассеяния нейтронов ISIS, рабочий диапазон темпе- ратур системы составляет от 10 до 300 К. В работе представ- лены и обсуждены исходная конструкция системы, предва- рительные результаты испытаний, текущие проблемы и не- достатки, а также перспективы применения. Ключевые слова: нейтронная спектроскопия, калориметрия, одновременная термодинамическая и динамическая характе- ризация. Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3 337 1. Introduction 2. Design 3. Preliminary results 4. Discussion 5. Conclusions Acknowledgements