Phonon spectra and vibrational heat capacity of quasi-one-dimensional structures formed by rare gas atoms on the surface of carbon nanotube bundles
The features of phonon spectra and their effect on the vibrational heat capacity of linear chains of inert gas atoms adsorbed onto a substrate, which is the surface of nanotubes bound to a nanobundle. The influence of the substrate results both in a shift of the lower limit of the chain spectrum f...
Gespeichert in:
| Datum: | 2019 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2019
|
| Schriftenreihe: | Физика низких температур |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/176075 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Phonon spectra and vibrational heat capacity of quasi-one-dimensional structures formed by rare gas atoms on the surface of carbon nanotube bundles / E.V. Manzhelii, S.B. Feodosyev, I.A. Gospodarev // Физика низких температур. — 2019. — Т. 45, № 3. — С. 404-412. — Бібліогр.: 21 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | The features of phonon spectra and their effect on the vibrational heat capacity of linear chains of inert gas
atoms adsorbed onto a substrate, which is the surface of nanotubes bound to a nanobundle. The influence of the
substrate results both in a shift of the lower limit of the chain spectrum from zero, and in mechanical stress in the
chain (its extension or compression) also. It is shown that in the case of a compressed chain, the non-central interaction between atoms is negative (repulsive), it results in a shift of the lower boundary of the spectrum of
transverse vibrations to low frequencies and to a shortening of the part of the specific heat temperature dependence in which this dependence is close to exponential. Heterogeneity of the nanobundle structure can cause a
change in the distances between atoms of the chain. It is shown both and analytically and numerically, that as a
result of it, discrete levels with frequencies both above and below the quasi-continuous spectrum band can appear in the phonon spectrum of the chain. The discrete levels with frequencies below the quasi-continuous spectrum band lead to a further shortening of the temperature interval at which the temperature dependence of the
specific heat is close to the exponential one. |
|---|