Tunneling conductance of the s-wave and d-wave pairing superconductive graphene–normal graphene junction
Within the framework of the Blonder–Tinkham–Klapwijk formalism we calculate and analyze the conductance of the normal graphene — s-wave and independently d-wave pairing superconductive graphene junction. The eigenfunctions, the Andreev and the normal reflection rates are obtained by solving the Dir...
Gespeichert in:
| Veröffentlicht in: | Физика низких температур |
|---|---|
| Datum: | 2019 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2019
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/176076 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Tunneling conductance of the s-wave and d-wave pairing superconductive graphene–normal graphene junction / A.M. Korol // Физика низких температур. — 2019. — Т. 45, № 5. — С. 576-583. — Бібліогр.: 35 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-176076 |
|---|---|
| record_format |
dspace |
| spelling |
Korol, A.M. 2021-02-03T15:43:57Z 2021-02-03T15:43:57Z 2019 Tunneling conductance of the s-wave and d-wave pairing superconductive graphene–normal graphene junction / A.M. Korol // Физика низких температур. — 2019. — Т. 45, № 5. — С. 576-583. — Бібліогр.: 35 назв. — англ. 0132-6414 https://nasplib.isofts.kiev.ua/handle/123456789/176076 Within the framework of the Blonder–Tinkham–Klapwijk formalism we calculate and analyze the conductance of the normal graphene — s-wave and independently d-wave pairing superconductive graphene junction. The eigenfunctions, the Andreev and the normal reflection rates are obtained by solving the Dirac–Bogoliubov– de Gennes equations. The Fermi velocity is believed to be different in the normal and in the superconductive regions. We consider the options of gapless and gapped graphene for both cases: s-wave and independently d-wave pairing. It is demonstrated that the characteristics of the junction considered are sensitive to the ratio vFN/vFS where vFN, vFS are the Fermi velocities in the normal and the superconductive graphene respectively. This conclusion refers to the Andreev reflection as well as to the normal one. The first of them is shown to be the dominant process for the formation of the conductivity. These results are true for an arbitrary value of the orientational angle of the d-waves. Each of four cases considered: s-, d-wave pairing and gapless and gapped graphene displays its own specific features of the conductance. The dependence of the conductance on the external electrostatic potential as well as on the Fermi energy is also analyzed in every case. The obtained results may be useful for controlling the transport properties of the normal graphene–superconductive graphene junction. У рамках формалізму Блондера–Тинкхема–Клапвійка розраховано та проаналізовано провідність контакту: нормальний графен–надпровідний графен із s-хвильовим і незалежно d-хвильовим спарюванням. Власні функції, коефіцієнти андріївського та нормального відбивання одержані за допомогою розв’язку рівнянь Дірака–Боголюбова–де Жена. Розглянуто випадки безщільового та щільового графену для обох ситуацій: s-хвильового і незалежно d-хвильового спарювання. Показано, що характеристики даного контакту є чутливими до відношення vFN/vFS, де vFN, vFS — швидкості Фермі в нормальному та надпровідному графені відповідно. Цей результат стосується як андріївського, так і нормального відбивання. Перший з них є визначальним процесом у формуванні провідності. Зроблені висновки справедливі для довільного орієнтаційного кута d-хвиль. У кожного з розглянутих чотирьох випадків: s-, d-спарювання, щільового та безщільового графена, свої особливості провідності. У кожному випадку проаналізовано залежність провідності від зовнішнього електростатичного потенціалу та від енергії Фермі. Одержані результати можуть бути корисними для регулювання транспортних властивостей контакту: нормальний графен–надпровідний графен. В рамках формализма Блондера–Тинкхема–Клапвийка рассчитана и проанализирована проводимость контакта: нормальный графен–сверхпроводящий графен с s-волновым и независимо d-волновым спариванием. Собственные функции, коэффициенты андреевского и нормального отражения получены с помощью решения уравнений Дирака– Боголюбова–де Жена. Рассмотрены случаи бесщелевого и щелевого графена для обеих ситуаций: s-волнового и независимо d-волнового спаривания. Показано, что характеристики данного контакта являются чувствительными к соотношению vFN/vFS, где vFN, vFS — скорости Ферми в нормальном и сверхпроводящем графене соответственно. Этот результат относится как к андреевскому, так и нормальному отражению. Первое из них является определяющим процессом в формировании проводимости. Сделанные выводы справедливы для произвольного ориентационного угла d-волн. У каждого из рассмотренных четырех случаев: s-, d-спаривания, щелевого и бесщелевоого графена, свои особенности проводимости. В каждом случае проанализирована зависимость проводимости от внешнего электростатического потенциала и энергии Ферми. Полученные результаты могут быть полезными для регулирования транспортных свойств контакта: нормальный графен–сверхпроводящий графен. en Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України Физика низких температур Надпровідність, зокрема високотемпературна Tunneling conductance of the s-wave and d-wave pairing superconductive graphene–normal graphene junction Тунельна провідність контакту: надпровідний графен із s-хвильовим та d-хвильовим спарюванням–нормальний графен Туннельная проводимость контакта: сверхпроводящий графен с s-волновым и d-волновым спариванием–нормальный графен Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Tunneling conductance of the s-wave and d-wave pairing superconductive graphene–normal graphene junction |
| spellingShingle |
Tunneling conductance of the s-wave and d-wave pairing superconductive graphene–normal graphene junction Korol, A.M. Надпровідність, зокрема високотемпературна |
| title_short |
Tunneling conductance of the s-wave and d-wave pairing superconductive graphene–normal graphene junction |
| title_full |
Tunneling conductance of the s-wave and d-wave pairing superconductive graphene–normal graphene junction |
| title_fullStr |
Tunneling conductance of the s-wave and d-wave pairing superconductive graphene–normal graphene junction |
| title_full_unstemmed |
Tunneling conductance of the s-wave and d-wave pairing superconductive graphene–normal graphene junction |
| title_sort |
tunneling conductance of the s-wave and d-wave pairing superconductive graphene–normal graphene junction |
| author |
Korol, A.M. |
| author_facet |
Korol, A.M. |
| topic |
Надпровідність, зокрема високотемпературна |
| topic_facet |
Надпровідність, зокрема високотемпературна |
| publishDate |
2019 |
| language |
English |
| container_title |
Физика низких температур |
| publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
| format |
Article |
| title_alt |
Тунельна провідність контакту: надпровідний графен із s-хвильовим та d-хвильовим спарюванням–нормальний графен Туннельная проводимость контакта: сверхпроводящий графен с s-волновым и d-волновым спариванием–нормальный графен |
| description |
Within the framework of the Blonder–Tinkham–Klapwijk formalism we calculate and analyze the conductance of the normal graphene — s-wave and independently d-wave pairing superconductive graphene junction.
The eigenfunctions, the Andreev and the normal reflection rates are obtained by solving the Dirac–Bogoliubov–
de Gennes equations. The Fermi velocity is believed to be different in the normal and in the superconductive regions. We consider the options of gapless and gapped graphene for both cases: s-wave and independently d-wave
pairing. It is demonstrated that the characteristics of the junction considered are sensitive to the ratio vFN/vFS
where vFN, vFS are the Fermi velocities in the normal and the superconductive graphene respectively. This conclusion refers to the Andreev reflection as well as to the normal one. The first of them is shown to be the dominant process for the formation of the conductivity. These results are true for an arbitrary value of the
orientational angle of the d-waves. Each of four cases considered: s-, d-wave pairing and gapless and gapped
graphene displays its own specific features of the conductance. The dependence of the conductance on the external electrostatic potential as well as on the Fermi energy is also analyzed in every case. The obtained results may
be useful for controlling the transport properties of the normal graphene–superconductive graphene junction.
У рамках формалізму Блондера–Тинкхема–Клапвійка
розраховано та проаналізовано провідність контакту: нормальний графен–надпровідний графен із s-хвильовим і незалежно d-хвильовим спарюванням. Власні функції, коефіцієнти
андріївського та нормального відбивання одержані за допомогою розв’язку рівнянь Дірака–Боголюбова–де Жена. Розглянуто випадки безщільового та щільового графену для обох
ситуацій: s-хвильового і незалежно d-хвильового спарювання. Показано, що характеристики даного контакту є чутливими до відношення vFN/vFS, де vFN, vFS — швидкості Фермі
в нормальному та надпровідному графені відповідно. Цей
результат стосується як андріївського, так і нормального
відбивання. Перший з них є визначальним процесом у формуванні провідності. Зроблені висновки справедливі для
довільного орієнтаційного кута d-хвиль. У кожного з розглянутих чотирьох випадків: s-, d-спарювання, щільового та
безщільового графена, свої особливості провідності. У кожному випадку проаналізовано залежність провідності від
зовнішнього електростатичного потенціалу та від енергії
Фермі. Одержані результати можуть бути корисними для
регулювання транспортних властивостей контакту: нормальний графен–надпровідний графен.
В рамках формализма Блондера–Тинкхема–Клапвийка
рассчитана и проанализирована проводимость контакта:
нормальный графен–сверхпроводящий графен с s-волновым и независимо d-волновым спариванием. Собственные
функции, коэффициенты андреевского и нормального отражения получены с помощью решения уравнений Дирака–
Боголюбова–де Жена. Рассмотрены случаи бесщелевого и
щелевого графена для обеих ситуаций: s-волнового и независимо d-волнового спаривания. Показано, что характеристики
данного контакта являются чувствительными к соотношению
vFN/vFS, где vFN, vFS — скорости Ферми в нормальном и
сверхпроводящем графене соответственно. Этот результат
относится как к андреевскому, так и нормальному отражению. Первое из них является определяющим процессом в
формировании проводимости. Сделанные выводы справедливы для произвольного ориентационного угла d-волн. У
каждого из рассмотренных четырех случаев: s-, d-спаривания, щелевого и бесщелевоого графена, свои особенности
проводимости. В каждом случае проанализирована зависимость проводимости от внешнего электростатического потенциала и энергии Ферми. Полученные результаты могут
быть полезными для регулирования транспортных свойств
контакта: нормальный графен–сверхпроводящий графен.
|
| issn |
0132-6414 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/176076 |
| citation_txt |
Tunneling conductance of the s-wave and d-wave pairing superconductive graphene–normal graphene junction / A.M. Korol // Физика низких температур. — 2019. — Т. 45, № 5. — С. 576-583. — Бібліогр.: 35 назв. — англ. |
| work_keys_str_mv |
AT korolam tunnelingconductanceoftheswaveanddwavepairingsuperconductivegraphenenormalgraphenejunction AT korolam tunelʹnaprovídnístʹkontaktunadprovídniigrafenízshvilʹovimtadhvilʹovimsparûvannâmnormalʹniigrafen AT korolam tunnelʹnaâprovodimostʹkontaktasverhprovodâŝiigrafenssvolnovymidvolnovymsparivaniemnormalʹnyigrafen |
| first_indexed |
2025-11-26T00:12:41Z |
| last_indexed |
2025-11-26T00:12:41Z |
| _version_ |
1850593375567216640 |
| fulltext |
Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 5, pp. 576–583
Tunneling conductance of the s-wave and d-wave pairing
superconductive graphene–normal graphene junction
A.M. Korol
National University for Food Technologies, Volodymyrska Str. 68, Kyiv 01601, Ukraine
Laboratory on Quantum Theory in Linkoping, ISIR, P.O. Box 8017, S-580, Linkoping, Sweden
E-mail: korolam@ukr.net
Received December 7, 2018, revised January 14, 2019, published online March 26, 2019
Within the framework of the Blonder–Tinkham–Klapwijk formalism we calculate and analyze the conducta-
nce of the normal graphene — s-wave and independently d-wave pairing superconductive graphene junction.
The eigenfunctions, the Andreev and the normal reflection rates are obtained by solving the Dirac–Bogoliubov–
de Gennes equations. The Fermi velocity is believed to be different in the normal and in the superconductive re-
gions. We consider the options of gapless and gapped graphene for both cases: s-wave and independently d-wave
pairing. It is demonstrated that the characteristics of the junction considered are sensitive to the ratio vFN/vFS
where vFN, vFS are the Fermi velocities in the normal and the superconductive graphene respectively. This con-
clusion refers to the Andreev reflection as well as to the normal one. The first of them is shown to be the domi-
nant process for the formation of the conductivity. These results are true for an arbitrary value of the
orientational angle of the d-waves. Each of four cases considered: s-, d-wave pairing and gapless and gapped
graphene displays its own specific features of the conductance. The dependence of the conductance on the exter-
nal electrostatic potential as well as on the Fermi energy is also analyzed in every case. The obtained results may
be useful for controlling the transport properties of the normal graphene–superconductive graphene junction.
Keywords: graphene–superconductive graphene junction, Andreev and normal reflections, conductance, Fermi velocity.
1. Introduction
Recently, the researchers close attention was focused on
the so-called Dirac materials ([1] and references therein).
These include some various and diverse substances such as
graphene, topological insulators, d-wave high-temperature
superconductors, superfluid phase 3He etc. (see the corre-
sponding table in [1]). The unifying factor for them is that
their low-energy fermion excitations are subjected to the
Dirac equation, and the dispersion relation of quasi-
particles is linear in nature. As a result, Dirac materials
have many common features [1]. It should also be empha-
sized that the Dirac materials will be of great practical im-
portance, since some of their properties are robust against
external perturbations due to, in particular, symmetry with
respect to the inversion of time [1]. The key value that
characterizes the dispersion relation of the Dirac quasi-
particles is the Fermi velocity. Therefore, it is clear that
significant efforts have been made to be able to control this
value and also to use this control in practice [2–12]. For
this purpose, a number of different methods were proposed
and experimentally tested. The Fermi velocity of charge
carriers in various structures is made to vary in space by
some special techniques, e.g., by the appropriate doping
[3], placing a grounded metal plane close to graphene sheet
(which makes electron-electron interactions weaker and
thereby modifies the Fermi velocity) [2], stretching a small
region of a graphene sheet [4] and others.
As graphene is one of the Dirac materials much atten-
tion has been paid to the study of graphene and various
graphene-based structures in recent years. This is due to
nontrivial properties of graphene such as a linear disper-
sion relation for the quasiparticles, whose behavior at low
energies is described by an equation similar to the Dirac–
Weyl one, unusual quantum Hall effect, the property of
chirality, the Klein tunneling, high mobility, ballistic
transport etc. [4]. And it should also be borne in mind that
graphene is a promising material for modern electronics.
One of the priority directions is to study the various possi-
bilities of controlling the energy spectrum of the graphene-
based structures. The electron-wave propagation in the
graphene-based structures with the tunable Fermi velocity
was investigated in [2–12] including the effect of the mag-
netic and the electric field. At the same time the pristine
graphene can also be induced by the external forces to be-
come the superconducting material, for example, super-
© A.M. Korol, 2019
Tunneling conductance of the s-wave and d-wave pairing superconductive graphen–normal graphene junction
conductivity can be induced in a graphene layer in the
presence of a superconducting electrode near it due to the
proximity effect. That’s why a lot of works were devoted
to exploring of the properties of such structures as the super-
conductive graphene, graphene–superconductive graphene,
graphene–insulator–superconductive graphene, graphene-
based Josephson junctions [13–25]. However, the effect of
tuning of the Fermi velocity on the characteristics of these
contacts has not been investigated so far. The Fermi veloci-
ty values were assumed to be equal in every region of the
structure considered in all of the cited references. From the
above, it follows the importance of the problem of analyz-
ing the transport features of charge carriers in the junction:
normal graphene–superconducting graphene due to differ-
ent values of the Fermi velocity in the normal and super-
conducting parts of the contact. The present work is devot-
ed to this analysis. Both the gapless and the gapped
graphene are taken into consideration.
Also we would like to note that one can find in litera-
ture a large variety of pairing models used in different
junctions which include the superconductive regions (the
junctions may not contain graphene as their part, obvious-
ly): s-, d-, p-, f-, g-, and other models of wave pairing (see,
e.g., [13–34]). The Fermi velocity is believed to be equal
in every region of the considered junctions in all cited ref-
erences. But, firstly, it may not be so in fact and, secondly,
one can change the Fermi velocity value in one or another
junction region specially (see, e.g., [2–12]). The main goal
of the present work is to show, in the relatively simple
models, that it is possible to control effectively the
transport properties of the related junctions by tuning the
Fermi velocity values in one or another junction region.
For this purpose we use the relatively simple models of s-
wave (as for example in [14,16,20,21,33]) and indepen-
dently d-wave (as, e.g., in [15,16,23]) pairing.
The paper is organized as follows. Section 2 presents
the considered model and needed formulae and we discuss
the results of calculations for the cases of the s- and d-
pairing in Sects. 3, 4, respectively.
2. Model and formulae
Let the normal and the superconductive parts of the
junction studied be placed along the 0x axis so that their
interface locates at a point x = 0. Let the superconducting
order parameter has the form (s-wave pairing, as for exam-
ple, in [14,16,20,21,33]):
0e ( )i
s xϕ∆ = ∆ ϑ (1)
where ϕ is the superconductive phase, ( )xϑ is the Heavi-
side unit step function. The eigenfunctions which describe
the quasiparticle in this system are subjected to the Dirac–
Bogolyubov–de Jennes equation
( ) ( )
( ) ( )
( ) ( )*
s
s
H U x x
x E x
x H U x
− ∆
Ψ = Ψ
∆ − +
(2)
where ( )F x x y yH ih= − σ ∂ + σ ∂v is the Dirac Hamiltonian,
U the external electrostatic potential applied to the super-
conducting region (it is believed that an additional elec-
trode covers the superconductor region), Fv is the Fermi
velocity, ,xσ yσ are Pauli matrices for the pseudospin.
The solution of the equation (2) is the four-component
electron and hole spinors which are of the following form:
in NG region
( )
1 1
e ee e
0 0
0 0
N N
Ne Ne
i i
ik x ik x
N nx r
Θ − Θ
−
− Ψ = + +
0
0
e1
Nh
N
ik x
a
i
r
e
−
Θ
+
, (3)
in SG region
( )
1
e
e
e e
e e e
S
S
S
i
ik x kx
S i i
i i i
x t
Θ
−
− β − ϕ
Θ − β − ϕ
Ψ = +
1
e
e
e e
e e e
S
S
S
i
ik x kx
i i
i i i
t
− Θ
− −
β − ϕ
− Θ β − ϕ
−
′+
−
, (4)
( ) ( ) 2( ) 2cos Ne h
F NNe h
FN
k E E
Θ
= + − − ∆ v
,
( ) cos S
S F
FS
k E U
Θ
= +
v
,
( ) cos S
S F
FS
k E U
Θ
= +
v
,
( )
2
1
sin
FS S
F S
k
k
U E
− =
+ ∆ β
v
,
1cos if S
S
E E−
β = < ∆ ∆
,
ch if S
S
Ei E
β = − > ∆ ∆
.
Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 5 577
A.M. Korol
Units 0 1= = v are adopted, 0v being the Fermi ve-
locity in the pristine graphene; we use the dimensionless
units for the Fermi velocity 0/ ,F F→v v v and present the
energy quantities in meV for convenience.
Angles of incidence of the quasiparticle wave on the
normal and the superconductive regions of the junction
considered are associated by the following equality
sin sinN N S Sk kΘ = Θ . (5)
(The analogous to (1)–(5) formulae have been widely used
in literature, e.g., in the papers [13–23]).
The coefficients in (3), (4) can be found by applying the
following appropriate boundary conditions on the eigen-
functions
( ) ( )0 0FN N FS Sx xΨ = = Ψ =v v , (6)
(see, e.g., [2,3,5–10]).
As a result we obtain for the coefficients of the Andreev
and normal reflections the expressions which are given in
the Appendix.
The conductivity G of the junction investigated can be
calculated due to known Blonder–Tinkham–Klapvijk for-
malism [35] which expresses G in terms of ar and nr :
( ) ( )
2 2
0
0
, , [1 , , ,F a N FG E E U G r E E U
π
= + Θ −∫
( ) ( )2, , , ]cosn N F N Nr E E U d− Θ Θ Θ (7)
where 0G is the ballistic conductivity of the normal gra-
phene. The equation (7) yields the conductivity of the struc-
ture under consideration for arbitrary parameter values.
3. Results and discussion for the case of s-wave pairing
Figure1 shows the dependence of the normalized (di-
mensionless) conductivity *
0/G G G= on the dimension-
less energy of quasiparticles 0/E E′ = ∆ in the case in
which a normal part of the considered contact is the gap-
less graphene ( 0N∆ = ). The upper and the lowest curves
in ra (E) and *( )G E′ dependences correspond to the values
of the Fermi velocity in the superconductor equal to 1 and
2 respectively, the third curve refers to 1.5FS =v ; for the
rn ( )E′ dependence the upper and the lowest curves refer to
2FS =v and 1 respectively. (We put an angle of incidence
of the quasiparticle wave on the normal region to be equal
to π/6 throughout the text, the superconductive parameter
∆0 = 12 meV [4]).
As follows from references [2,3,5–10] the magnitude of
the Fermi velocity may vary approximately up to 4 in relation
to this value in the pristine graphene. Curve 1 shows that the
calculations of our work are in agreement with the results of
the previous studies [13–23] according to which conductivity
*G is not dependent on energy E in the range where it does
not exceed the size of the superconducting gap. However, we
see that in the case of different values of the Fermi velocity
FNv and FSv the dependence of conductivity on the excita-
tion energy of quasiparticles in the above energy range
0 SE< < ∆ takes place. This result is qualitatively different
from that obtained in papers [13–23] and it shows that the
value of the conductivity of the system under investigation
depends on energy E throughout its whole range.
The larger is the difference between the Fermi velocities in
the normal and the superconductor areas, the more substantial
effect on the conductivity we observe. For all the cases con-
sidered in which FS FN≠v v , the magnitude of conductivity
has a peak-like maximum at a point SE = ∆ ; the maximum
value of *G grows with FSv decreasing (if )FS FN>v v .
Fig. 1. Functions of *( ) ( ) ( ) , ,a nr E r E G E′ ′ ′ for the gapless normal region of the junction considered ( 0)N∆ = . The upper and the low-
est curves in ra (E) and *( )G E′ correspond to the values of the Fermi velocity in the superconductor equal to 1 and 2 respectively, the
third curve refers to 1.5FS =v ; for the rn ( )E′ dependence the upper and the lowest curves refer to 2FS =v and 1, respectively.
578 Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 5
Tunneling conductance of the s-wave and d-wave pairing superconductive graphen–normal graphene junction
Consider further the results obtained for contacts: the
gapped normal graphene–superconducting graphene. First
of all, note that the conductivity of this system *G reveals
a complicated dependence on its parameters and the results
of calculation of *G essentially depends on the interplay
between the parameters such as the Fermi velocity in the
normal and the superconducting regions (ratio / )FS FNv v ,
the magnitude of a gap in the normal area N∆ , an external
electrostatic potential U, the Fermi energy FE . As for the
case of 0N∆ = the larger is the difference between the Fer-
mi velocities in the normal and the superconductor areas, the
more substantial effect on the conductivity we observe.
Note also that the examined characteristics of the NG–
NS contact containing the gapped graphene in the N region
have some quality differences from the case of a contact
with the gapless graphene. So in the former case, there is a
significant functional dependence of conductivity on the
potential U, as well as on the Fermi level FE , while the
conductivity of the system which includes the gapless
graphene is independent of variables U and FE . Because
of this, in particular, in subsequent figures, we present the
results of our calculations for two different values of U,
namely 1 0U = and 2U = 5.6 eV.
Figure 2 shows the dependence of the normal, of the
Andreev reflection, and of the dimensionless conductivity
*G on the excitation energy for NG–NS contact for the
following parameters: Fermi velocity in N region 1FN =v ;
the gap width in N region 56 meV, the upper and the lower
curves in this figure correspond to values of potential U:
1 0U = and 2U = 5.6 eV FS =v 1.5. It is evident that the
functions ( )ar E and ( )nr E , i.e., the rates of the Andreev
and the normal reflection respectively have the peak-like
extremes at a point SE = ∆ , which is equal to the width of
the superconducting gap. It is true for arbitrary values of
the potential U. However, the behavior of the Andreev and
the normal reflection rates has the opposite character,
namely the function ( )ar E increases with energy from zero
and reaches a maximum at a point SE = ∆ ; instead the func-
tion ( )nr E decreases with E increasing, reaches a minimum
value at a point SE = ∆ , and then grows. The value of con-
ductivity *( )G E is mainly determined by the Andreev reflec-
tion process and the shape of the corresponding curve is simi-
lar to that of the function ( )ar E . We would like to emphasize
here two important facts: 1) conductivity depends on the po-
tential U (unlike for the case where 0N∆ = , 1FN =v ; 2) in-
creasing in potential U leads to higher values of the conduc-
tivity unlike for the case of identical Fermi velocity values
in N and S contact regions 1,FS FN= =(v v 0N∆ ≠ ). This
behavior is due to the process of the Andreev reflection. Note
also that the conductance increases with decreasing of the
Fermi velocity in the superconducting region FSv .
Figure 3 presents the same functions as in Fig. 2, but for
the case of bigger gap in the normal region ∆N = 112 meV.
For larger values of N∆ , there is an interesting result: the
conductivity reveals the non-monotonic dependence on the
Fermi velocity values in the superconductors region FSv .
In this case, contrary for the case of smaller values N∆ the
conductivity increases with increasing FSv , then reaches
its maximum at the value FSv which is approximately
equal to 1.6, then *G is reduced. This behavior of the con-
ductivity as a function of the Fermi velocity is again due
the process of Andreev reflection.
Regarding the dependence of the Andreev, of the nor-
mal reflections and of the conductivity on the Fermi energy
FE we would like to note the main features of these rela-
tionships which are as follows:
1) unlike for the case of 0N∆ = , 1FN =v these func-
tions depend essentially on the Fermi level FE ;
Fig. 2. Plots of *( ) ( ) ( ) , ,a nr E r E G E′ ′ ′ dependencies for the gapped normal region with the values of ∆N = 56 meV, 1.5FS =v . The
upper and the lower curves in this figure correspond to values of potential U: 1 0 U = and 1U = 5.6 eV, respectively.
Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 5 579
A.M. Korol
2) decreasing in FE leads to the increased conductivity
and not to its decreasing as for the case 1FN =v , 0N∆ ≠ .
3) functions *( ) ( ) ( ) , ,a nr E r E G E′ ′ ′ become practically
independent on U for sufficiently large values of FE .
4. Results and discussion for the case of d-wave pairing
Now we consider the case of the d-wave pairing and
modeled it with the help of the so called 2 2( )x y
d
−
model so
that the superconducting order parameter is of the form (as
e.g., in [15,16,23]):
0e cos (2 2 ) ( )i
s S xϕ∆ = ∆ Θ − α ϑ (8)
where ( )xϑ is the Heaviside unit step function, ϕ is the
superconductive phase, SΘ angle of incidence of the
quasiparticles, α the rotational angle. We put an angle
of incidence of the quasiparticle wave on the normal
region to be equal to /6π , the superconductive parame-
ter ∆0 = 12 meV [4].
Note that as in the case of s-wave pairing conductivity
of this system *G displays a complicated dependence on its
parameters and the results of calculation of *G essentially
depends on the interplay between the following parame-
ters: the rotational angle, the Fermi velocity in the normal
and the superconducting regions, the magnitude of a gap in
the normal area N∆ , an external electrostatic potential U,
the Fermi energy FE .
Figure 4 shows the dependence of the normalized (di-
mensionless) conductivity *
0/G G G= on the dimension-
less energy of quasiparticles 0/E E′ = ∆ in the case in
which a normal part of the considered contact is the
gapped graphene, 56mVN∆ = the value of the rotational
angle α is equal to /6π .
As in the case of s-pairing there is a significant func-
tional dependence of conductivity on the potential U , as
well as on the Fermi level FE , so, in subsequent figures,
we present the results of our calculations for two different
values of U , namely 1 0U = and 2U =5.6 eV. (Note that
the conductivity of the system which includes the gapless
graphene is independent of variables U and FE ). It is seen
from Fig. 4 that the conductivity of the structure explored
has the peak-like extremes not at the energy point equal to
the width of the superconducting gap 0 E = ∆ , as it is for
the case of the s-wave symmetry, but there is a substantial
shift of this peak to lesser excitation energies due to the
nonzero value of α. It is true for arbitrary values of the
potential U . The value of conductivity *( )G E is mainly
determined by the Andreev reflection process and the
shape of the corresponding curve is similar to that of the
function ( )ar E — as for the case of the s-wave pairing.
Fig. 3. Plots of the Andreev, of the normal reflections and of the conductivity dependencies on energy for the values of ∆N = 112 meV,
1.5FS =v . The upper and the lower curves in this figure correspond to values of potential U: 1 0 U = and 2U = 5.6 eV, respectively.
Fig. 4. The dependence of the normalized (dimensionless) con-
ductivity *
0/G G G= on the dimensionless energy of quasi-
particles 0/E E′ = ∆ , values of ∆N = 56 meV, FS =v 1.5, /6α = π .
The upper and the lower curves in this figure correspond to
values of potential U: 1 0 U = and 2U = 5.6 eV, respectively,
FE = 0.56 eV.
580 Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 5
Tunneling conductance of the s-wave and d-wave pairing superconductive graphen–normal graphene junction
The upper and the lower curves in this figure correspond
to values of potential U: namely 1 0U = and 2U =5.6 eV,
respectively, FE = 0.56 eV.
Figure 5 presents the conductivity as a function of energy
for the value of α which is equal to /4.π Here the shift of the
maximum peak is essentially larger than for the case of
/6:α = π hence the shift of the observed curves is very sensi-
tive to values of the rotational angle in the d-wave pairing.
Figure 6 presents the *G vs E function for the following
values of the difference between the Fermi velocities in the
normal and the superconductor areas: FSv = 1.2, /6α = π
(Fig. 6(a)), and FSv = 2, /4α = π (Fig. 6(b)), ∆N = 56 meV.
We see from Figs. 4–6 that the larger is the difference be-
tween the Fermi velocities in the normal and the supercon-
ductor areas, the more substantial effect on the conductivi-
ty we observe. For all the cases considered in which
FS FN≠v v , the magnitude of conductivity has a peak-like
maximum at a point that depends on the value of ;α the
maximum value of *G grows with FSv decreasing inde-
pendently on α (if FS FN>v v ).
In Fig. 7 the function *( )G E is plotted for the case
of bigger gap in the normal region ∆N = 112 meV. As for
s-wave pairing, for larger values of N∆ , an interesting
result is observed: the conductivity reveals the non-
monotonic dependence on the Fermi velocity values in
the superconductors region FSv . In this case, contrary for
the case of smaller values N∆ the conductivity increases
with increasing FSv , then reaches its maximum at the
value FSv which is approximately the same for different
values of ,α then lessens.
And we see that not only the location of the maximum es-
sentially depends on α but the magnitude of the conductivity
also is substantially dependent on the rotational angle value.
Next we would like to note that the function *( )G E de-
pends substantially on FE and it is true for an arbitrary
value of .α Decreasing in FE leads to the increased con-
Fig. 5. The dependence of the conductivity on energy for /4,α = π
∆N = 56 meV, FS =v 1.5. The upper and the lower curves refer to
values of U = 0; 5.6 eV respectively, EF = 0.56 eV.
Fig. 6. The dependence of the conductivity on energy for the
following values of the difference between the Fermi velocities in
the normal and the superconductor areas: FSv = 1.2, /6α = π (a),
FSv = 2, /4α = π (b), ∆N = 56 meV. The upper and the lower
curves in Figs. 6(a) and (b) correspond to values of potential U:
1 0 U = and 2U = 5.6 eV, respectively, FE = 0.56 eV.
Fig. 7. The dependence of the conductivity on energy for the case
of bigger gap in the normal region N∆ = 112 meV, /6,α = π
FS =v 1.5. The upper and the lower curves correspond to values of
potential U: 1 0 U = and 2U = 5.6 eV, respectively, FE = 0.56 eV.
Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 5 581
2 4 6
0.5
1
2
1.0
1.5
2.0
G
*
3
E 10??
2 4 6
0.5
1
2
1.0
1.5
2.0
G
*
3
E 10??
(a)
(b)
2 4 6
0.5
1
2
1.0
1.5
2.0
G
*
3
E 10??
A.M. Korol
ductivity and not to its decreasing as for the case 1, FS =v
0N∆ ≠ . The conductivity becomes practically independent
on U for sufficiently large values of FE .
Considering the case of the junction studied with the gap-
less normal graphene we must note the following. Inde-
pendently of values of α the conductivity does not depend on
energy in the region where SE < ∆ — as for the case of s-
pairing. The larger is the difference between the Fermi veloci-
ties in the normal and the superconductor areas, the more sub-
stantial effect on the conductivity we observe for each value
of .α As for the case of the gapped normal graphene, for all
the cases considered in which FS FN≠v v , the magnitude of
conductivity has a peak-like maximum at a point SE = ∆ ; the
maximum value of *G grows with FSv decreasing (if
FS FN>v v ). The function *( )G E is independent on the ex-
ternal potential U for the case 0,N∆ = 1FS ≠v .
5. Conclusions
The following nanoscale structure is considered: the s-,
and independently d-wave pairing superconducting graphene
in contact with the normal graphene. It is believed that the
Fermi velocity value in the superconducting graphene may
differ from that in the pristine graphene. With the help the
Blonder–Tinkham–Klapwijk formalism, the conductivity
G is calculated taking into account the fact that the exter-
nal potential U is applied to the superconducting part of
the given structure. The coefficients of both the normal and
the Andreev reflection are evaluated within the framework
of the Dirac–Bogoliubov–de Gennes equations. It is shown
that the determining factor in the formation of the conduc-
tivity is the process of Andreev reflection. A characteristic
feature of the ( )G E dependence is the presence of a peak at
the energy point SE = ∆ , S∆ being the superconducting
energy gap in graphene which depends in particular on the
value of the rotational angle. The value of the maximum
(peak) value of ( )G E , as well as the ( )G E curve steepness
essentially depends on the value of the Fermi velocity Fv .
The dependence of the conductivity on the potential U as
well as on the Fermi level FE is analyzed for different values
of the rotational angle. The obtained results of the present
work may be useful for controlling the conductivity of the
considered junction due to changing of the Fermi velocity in
each of the junction regions. And we would like to emphasize
that this statement can be related to a lot of other junctions
containing the normal and the superconductive regions, such
as considered in, for example, [27–34].
Appendix A
Expressions for the Andreev and the normal reflections
are as follows:
e
i
a
u abr
j
− ϕ
=
v ,
2 2
1n
cu dr c
j
+
= −
v ,
a q l= + , b l p= + , c q l= − , d n l= − , 2 2j u ef gh= − v ,
h l n= + , e q n= + , f l p= − , –g q p= .
e NiF N
FN FS N
E
l
k
Θ−∆
=
v v
, e NiF N
FN FS N
E
q
k
− Θ− ∆
=
v v
,
e SiF S
FN FS S
E U
n
k
Θ+ − ∆
=
v v
, e SiFN S
FN FS S
E U
p
k
− Θ+ − ∆
=
v v
.
( ) ( )
0,5 1
E
u E
E
Ω
= +
, ( ) ( )
0.5 1
E
E
E
Ω
= −
v ,
( ) 2 2
SE EΩ = −∆ ,
and we account for the condition ,FE N E∆ .
________
1. T.O. Wehling, A.M. Black-Schaffer, and A.V. Balatsky,
Adv. Phys. 63, 1 (2014).
2. A. Raoux, M. Polini, R. Asgari, A.R. Hamilton, R. Fasio,
and A.H. MacDonald, Phys. Rev. B 81, 073407 (2010).
3. L. Tapashto, G. Dobrik, P. Nemes-Inche, G. Vertesy, Ph.
Lambin, and L.P. Biro, Phys. Rev. B 78, 233407 (2008).
4. A.N. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov,
and A.K. Geim, Rev. Mod. Phys. 81, 109 (2009); K.S.
Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V.
Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666
(2004); Y. Zhang, Y.-W. Tan, H.L. Stormer, and P. Kim,
Nature 438, 201 (2005).
5. L. Liu, Yu-Xian Li, and J. Liu, Phys. Lett. A 376, 3342
(2012).
6. Y. Wang, Y. Liu, and B. Wang, Physica E 53, 186 (2013).
7. L. Sun, C. Fang, and T. Liang, Chin. Phys. Lett. 30, 047201
(2013).
8. A. Concha and Z.Tešanović, Phys. Rev. B 82, 033413 (2010).
9. J.H. Yuan, J.J. Zhang, Q.J. Zeng, J.P. Zhang, and Z. Cheng,
Physica B 406, 4214 (2011).
10. P.M. Krstajic and P. Vasilopoulos, J. Phys.: Condens Matter
23, 135302 (2011).
11. A.M. Korol, N.V. Medvid’, and S.I. Litvynchuk, Spring.
Proc. Phys. 167, 215 (2015).
12. А.М. Король, А.И. Соколенко, И.В. Соколенко, ФНТ 44,
1025 (2018) [Low Temp. Phys. 44, 803 (2018)].
13. H. Goudarzi, H. Sedghi, M. Khezelrou, Kh. Mabhouti,
Physica C 470, 1981 (2010).
14. S. Bhattacharjee and K. Sengupta, Phys. Rev. Lett. 97,
217001 (2006).
15. H. Goudarzi and M. Khezelrou, Physica E 43, 604 (2010).
16. J. Linder and A. Sundbo, Phys. Rev. B 77, 064507 (2008).
17. Bumned Soodchomshom, I-Ming Tang, and Rassmidara
Hoonsavat, Physica C 469, 689 (2009).
18. Chunxu Bai, Juntao Wang, and Yanling Yang, Superlatt.
Microstruct. 49, 151 (2011).
19. Bumned Soodchomshom, J. Supercond. Nov. Magn. 25, 405
(2012).
582 Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 5
https://doi.org/10.1080/00018732.2014.927109
https://doi.org/10.1103/PhysRevB.81.073407
https://doi.org/10.1103/PhysRevB.78.233407
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1126/science.1102896
https://doi.org/10.1038/nature04235
https://doi.org/10.1016/j.physleta.2012.08.047
https://doi.org/10.1016/j.physe.2013.05.010
https://doi.org/10.1088/0256-307X/30/4/047201
https://doi.org/10.1103/PhysRevB.82.033413
https://doi.org/10.1016/j.physb.2011.08.010
https://doi.org/10.1088/0953-8984/23/13/135302
https://doi.org/10.1063/1.5049162
https://doi.org/10.1016/j.physc.2010.08.010
https://doi.org/10.1103/PhysRevLett.97.217001
https://doi.org/10.1016/j.physe.2010.10.002
https://doi.org/10.1103/PhysRevB.77.064507
https://doi.org/10.1016/j.physc.2009.02.016
https://doi.org/10.1007/s10948-011-1328-9
Tunneling conductance of the s-wave and d-wave pairing superconductive graphen–normal graphene junction
20. Chunxu Bai and Yanling Yang, Phys. Lett. A 374, 882 (2010).
21. Tatnatchai Suwannasit, I-Ming Tang, Rassmidara Hoonsavat,
and Bumned Soodchomshom, J. Low Temp. Phys. 165, 15
(2011).
22. M. Salehi and G. Rashedi, Physica C 470, 703 (2010).
23. H. Goudarzi, M. Khezelrou, and T. Dezhaloud, Physica C
489, 8 (2013).
24. J.P.L. Faye, P. Sahebsara, and D. Senechal, Phys. Rev. B 92,
085121 (2015).
25. Rahul Nandkishore, L.S. Levitov, and A.V. Chubukov,
Nature Phys. 8, 158 (2012).
26. Jianfrei Zou and Guojun Jin, EPL 87, 27008 (2009).
27. R. Vali and Mehran Vali, J. Phys.: Condens. Matter 24,
325702 (2012).
28. Annica M. Black-Schaffer and Carsten Honerkamp, J. Physics:
Condens. Matter 26, 42 (2014).
29. Yu.A. Kolesnichenko, A.N. Omelyanchouk, and S.N.
Shevchenko, Fiz. Nizk. Temp. 30, 288 (2004) [Low Temp.
Phys. 30, 213 (2004)].
30. R. Mahmoodi and S.N. Shevchenko, Fiz. Nizk. Temp. 28,
262 (2002) [Low Temp. Phys. 28, 184 (2002)].
31. Yu.A. Kolesnichenko and A.N. Omelyanchuk, Fiz. Nizk.
Temp. 30, 714 (2004) [Low Temp. Phys. 30, 535 (2004)].
32. Y. Yerin and A.N. Omelyanchuk, Fiz. Nizk. Temp. 43, 1263
(2017) [Low Temp. Phys. 43, 1013 (2017)].
33. Liang Fu and C.L. Kane, Phys. Rev. Lett. 100, 096407
(2008).
34. Yukio Tanaka, Takehito Yokoyama, and Naoto Nagaosa,
Phys. Rev. Lett. 103, 107002 (2009).
35. G.E. Blonder, M. Tinkham, and T.M. Klapwijk, Phys. Rev. B
25, 4515 (1982).
___________________________
Тунельна провідність контакту: надпровідний
графен із s-хвильовим та d-хвильовим
спарюванням–нормальний графен
А.М. Король
У рамках формалізму Блондера–Тинкхема–Клапвійка
розраховано та проаналізовано провідність контакту: нор-
мальний графен–надпровідний графен із s-хвильовим і неза-
лежно d-хвильовим спарюванням. Власні функції, коефіцієнти
андріївського та нормального відбивання одержані за допомо-
гою розв’язку рівнянь Дірака–Боголюбова–де Жена. Розгляну-
то випадки безщільового та щільового графену для обох
ситуацій: s-хвильового і незалежно d-хвильового спарюван-
ня. Показано, що характеристики даного контакту є чутли-
вими до відношення vFN/vFS, де vFN, vFS — швидкості Фермі
в нормальному та надпровідному графені відповідно. Цей
результат стосується як андріївського, так і нормального
відбивання. Перший з них є визначальним процесом у фор-
муванні провідності. Зроблені висновки справедливі для
довільного орієнтаційного кута d-хвиль. У кожного з розгля-
нутих чотирьох випадків: s-, d-спарювання, щільового та
безщільового графена, свої особливості провідності. У кож-
ному випадку проаналізовано залежність провідності від
зовнішнього електростатичного потенціалу та від енергії
Фермі. Одержані результати можуть бути корисними для
регулювання транспортних властивостей контакту: нормаль-
ний графен–надпровідний графен.
Ключові слова: контакт графен–надпровідний графен, ан-
дріївське та нормальне відбивання, провідність, швидкість
Фермі.
Туннельная проводимость контакта:
сверхпроводящий графен с s-волновым
и d-волновым спариванием–нормальный графен
А.Н. Король
В рамках формализма Блондера–Тинкхема–Клапвийка
рассчитана и проанализирована проводимость контакта:
нормальный графен–сверхпроводящий графен с s-волно-
вым и независимо d-волновым спариванием. Собственные
функции, коэффициенты андреевского и нормального от-
ражения получены с помощью решения уравнений Дирака–
Боголюбова–де Жена. Рассмотрены случаи бесщелевого и
щелевого графена для обеих ситуаций: s-волнового и незави-
симо d-волнового спаривания. Показано, что характеристики
данного контакта являются чувствительными к соотношению
vFN/vFS, где vFN, vFS — скорости Ферми в нормальном и
сверхпроводящем графене соответственно. Этот результат
относится как к андреевскому, так и нормальному отраже-
нию. Первое из них является определяющим процессом в
формировании проводимости. Сделанные выводы справед-
ливы для произвольного ориентационного угла d-волн. У
каждого из рассмотренных четырех случаев: s-, d-спарива-
ния, щелевого и бесщелевоого графена, свои особенности
проводимости. В каждом случае проанализирована зависи-
мость проводимости от внешнего электростатического по-
тенциала и энергии Ферми. Полученные результаты могут
быть полезными для регулирования транспортных свойств
контакта: нормальный графен–сверхпроводящий графен.
Ключевые слова: контакт графен–сверхпроводящий графен,
андреевское и нормальное отражение, проводимость, ско-
рость Ферми.
Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 5 583
https://doi.org/10.1016/j.physleta.2009.11.086
https://doi.org/10.1007/s10909-011-0380-y
https://doi.org/10.1016/j.physc.2010.07.003
https://doi.org/10.1016/j.physc.2013.03.004
https://doi.org/10.1103/PhysRevB.92.085121
https://doi.org/10.1209/0295-5075/87/27008
https://doi.org/10.1088/0953-8984/24/32/325702
https://doi.org/10.1088/0953-8984/26/42/423201
https://doi.org/10.1088/0953-8984/26/42/423201
https://doi.org/10.1063/1.1645180
https://doi.org/10.1063/1.1645180
https://doi.org/10.1063/1.1468521
https://doi.org/10.1063/1.1789112
https://doi.org/10.1063/1.5004444
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.103.107002
https://doi.org/10.1103/PhysRevB.25.4515
1. Introduction
2. Model and formulae
3. Results and discussion for the case of s-wave pairing
4. Results and discussion for the case of d-wave pairing
5. Conclusions
Appendix A
|