The low-temperature specific heat of MWCNTs
The specific heat of multi-walled carbon nanotubes (MWCNTs) with a low defectiveness and with a low content of inorganic impurities has been measured in the temperature range from 1.8 to 275 K by the thermal relaxation method. The elemental composition and morphology of the MWCNTs were determined us...
Gespeichert in:
| Datum: | 2019 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2019
|
| Schriftenreihe: | Физика низких температур |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/176086 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | The low-temperature specific heat of MWCNTs / V.V. Sumarokov, A. Jeżowski, D. Szewczyk, M.I. Bagatski, M.S. Barabashko, A.N. Ponomarev, V.L. Kuznetsov, S.I. Moseenkov // Физика низких температур. — 2019. — Т. 45, № 3. — С. 395-403. — Бібліогр.: 55 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-176086 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1760862025-02-09T16:28:21Z The low-temperature specific heat of MWCNTs Низькотемпературна питома теплоємність багатостінних вуглецевих нанотрубок Низкотемпературная удельная теплоемкость многостенных углеродных нанотрубок Sumarokov, V.V. Jeżowski, A. Szewczyk, D. Bagatski, M.I. Barabashko, M.S. Ponomarev, A.N. Kuznetsov, V.L. Moseenkov, S.I. Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018) The specific heat of multi-walled carbon nanotubes (MWCNTs) with a low defectiveness and with a low content of inorganic impurities has been measured in the temperature range from 1.8 to 275 K by the thermal relaxation method. The elemental composition and morphology of the MWCNTs were determined using scanning electron microscopy analysis and energy dispersion x-ray spectroscopy. The MWCNTs were prepared by chemical catalytic vapor deposition and have mean diameters from 7 nm up to 18 nm and lengths in some tens of microns. MWCNTs purity is over 99.4 at.%. The mass of the samples ranged from 2–4 mg. It was found that the temperature dependence of the specific heat of the MWCNTs differs significantly from other carbon materials (graphene, bundles of SWCNTs, graphite, diamond) at low temperatures. The specific heat of MWCNTs systematically decreases with increasing diameter of the tubes at low temperatures. The character of the temperature dependence of the specific heat of the MWCNTs with different diameters demonstrates the manifestation of different dimensions from 1D to 3D, depending on the temperature regions. The crossover temperatures are about 6 and 40 K. In the vicinity of these temperatures, a hysteresis is observed. Питому теплоємність багатостінних вуглецевих нанотрубок (БСВНТ) з низькою дефектністю та низьким вмістом неорганічних домішок виміряно в діапазоні температур 1,8–275 К методом теплової релаксації. Зразки БСВНТ отримано хімічним каталітичним осадженням з парової фази. Елементний склад і морфологію БСВНТ визначено за допомогою скануючої електронної мікроскопії та енергодисперсійної рентгенівської спектроскопії. Нанотрубки мали середній діаметр від 7 до 18 нм і довжину в кілька десятків мікрон. Чистота БСВНТ була більш ніж 99,4 ат.%. Маса зразків становила від 2 до 4 мг. Виявлено, що температурна залежність питомої теплоємності БСВНТ значно відрізняється від теплоємності інших вуглецевих матеріалів (графена, в’язок ОСВНТ, графіту, алмазу) при низьких температурах. Теплоємність БСВНТ систематично зменшується зі збільшенням діаметра нанотрубок при низьких температурах. Температурні залежності питомої теплоємності БСВНТ з різними діаметрами демонструють притаманний низьковимірним системам характер від 1D до 3D в залежності від температурних областей. Температури кросовера складають близько 6 та 40 К. Поблизу цих температур спостерігається гістерезис. Удельная теплоемкость многостенных углеродных нанотрубок (МСУНТ) с низкой дефектностью и низким содержанием неорганических примесей измерена в диапазоне температур 1,8–275 К методом тепловой релаксации. Образцы МСУНТ получены химическим каталитическим осаждением из паровой фазы. Элементный состав и морфология МСУНТ определены с помощью сканирующей электронной микроскопии и энергодисперсионной рентгеновской спектроскопии. Нанотрубки имели средний диаметр от 7 до 18 нм и длину в несколько десятков микрон. Чистота МСУНТ более 99,4 ат.%. Масса образцов составляла от 2 до 4 мг. Обнаружено, что температурная зависимость удельной теплоемкости МСУНТ значительно отличается от теплоемкости других углеродных материалов (графена, связок ОСУНТ, графита, алмаза) при низких температурах. Теплоемкость МСУНТ систематически уменьшается с увеличением диаметра нанотрубок при низких температурах. Температурные зависимости удельной теплоемкости МСУНТ с разными диаметрами демонстрируют присущий низкоразмерным системам характер от 1D до 3D в зависимости от температурных областей. Температуры кроссовера составляют около 6 и 40 К. Вблизи этих температур наблюдается гистерезис. 2019 Article The low-temperature specific heat of MWCNTs / V.V. Sumarokov, A. Jeżowski, D. Szewczyk, M.I. Bagatski, M.S. Barabashko, A.N. Ponomarev, V.L. Kuznetsov, S.I. Moseenkov // Физика низких температур. — 2019. — Т. 45, № 3. — С. 395-403. — Бібліогр.: 55 назв. — англ. 0132-6414 https://nasplib.isofts.kiev.ua/handle/123456789/176086 en Физика низких температур application/pdf Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018) Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018) |
| spellingShingle |
Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018) Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018) Sumarokov, V.V. Jeżowski, A. Szewczyk, D. Bagatski, M.I. Barabashko, M.S. Ponomarev, A.N. Kuznetsov, V.L. Moseenkov, S.I. The low-temperature specific heat of MWCNTs Физика низких температур |
| description |
The specific heat of multi-walled carbon nanotubes (MWCNTs) with a low defectiveness and with a low content of inorganic impurities has been measured in the temperature range from 1.8 to 275 K by the thermal relaxation method. The elemental composition and morphology of the MWCNTs were determined using scanning
electron microscopy analysis and energy dispersion x-ray spectroscopy. The MWCNTs were prepared by chemical catalytic vapor deposition and have mean diameters from 7 nm up to 18 nm and lengths in some tens of microns. MWCNTs purity is over 99.4 at.%. The mass of the samples ranged from 2–4 mg. It was found that the
temperature dependence of the specific heat of the MWCNTs differs significantly from other carbon materials
(graphene, bundles of SWCNTs, graphite, diamond) at low temperatures. The specific heat of MWCNTs systematically decreases with increasing diameter of the tubes at low temperatures. The character of the temperature
dependence of the specific heat of the MWCNTs with different diameters demonstrates the manifestation of different dimensions from 1D to 3D, depending on the temperature regions. The crossover temperatures are about
6 and 40 K. In the vicinity of these temperatures, a hysteresis is observed. |
| format |
Article |
| author |
Sumarokov, V.V. Jeżowski, A. Szewczyk, D. Bagatski, M.I. Barabashko, M.S. Ponomarev, A.N. Kuznetsov, V.L. Moseenkov, S.I. |
| author_facet |
Sumarokov, V.V. Jeżowski, A. Szewczyk, D. Bagatski, M.I. Barabashko, M.S. Ponomarev, A.N. Kuznetsov, V.L. Moseenkov, S.I. |
| author_sort |
Sumarokov, V.V. |
| title |
The low-temperature specific heat of MWCNTs |
| title_short |
The low-temperature specific heat of MWCNTs |
| title_full |
The low-temperature specific heat of MWCNTs |
| title_fullStr |
The low-temperature specific heat of MWCNTs |
| title_full_unstemmed |
The low-temperature specific heat of MWCNTs |
| title_sort |
low-temperature specific heat of mwcnts |
| publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
| publishDate |
2019 |
| topic_facet |
Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018) |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/176086 |
| citation_txt |
The low-temperature specific heat of MWCNTs / V.V. Sumarokov, A. Jeżowski, D. Szewczyk, M.I. Bagatski, M.S. Barabashko, A.N. Ponomarev, V.L. Kuznetsov, S.I. Moseenkov // Физика низких температур. — 2019. — Т. 45, № 3. — С. 395-403. — Бібліогр.: 55 назв. — англ. |
| series |
Физика низких температур |
| work_keys_str_mv |
AT sumarokovvv thelowtemperaturespecificheatofmwcnts AT jezowskia thelowtemperaturespecificheatofmwcnts AT szewczykd thelowtemperaturespecificheatofmwcnts AT bagatskimi thelowtemperaturespecificheatofmwcnts AT barabashkoms thelowtemperaturespecificheatofmwcnts AT ponomarevan thelowtemperaturespecificheatofmwcnts AT kuznetsovvl thelowtemperaturespecificheatofmwcnts AT moseenkovsi thelowtemperaturespecificheatofmwcnts AT sumarokovvv nizʹkotemperaturnapitomateploêmnístʹbagatostínnihvuglecevihnanotrubok AT jezowskia nizʹkotemperaturnapitomateploêmnístʹbagatostínnihvuglecevihnanotrubok AT szewczykd nizʹkotemperaturnapitomateploêmnístʹbagatostínnihvuglecevihnanotrubok AT bagatskimi nizʹkotemperaturnapitomateploêmnístʹbagatostínnihvuglecevihnanotrubok AT barabashkoms nizʹkotemperaturnapitomateploêmnístʹbagatostínnihvuglecevihnanotrubok AT ponomarevan nizʹkotemperaturnapitomateploêmnístʹbagatostínnihvuglecevihnanotrubok AT kuznetsovvl nizʹkotemperaturnapitomateploêmnístʹbagatostínnihvuglecevihnanotrubok AT moseenkovsi nizʹkotemperaturnapitomateploêmnístʹbagatostínnihvuglecevihnanotrubok AT sumarokovvv nizkotemperaturnaâudelʹnaâteploemkostʹmnogostennyhuglerodnyhnanotrubok AT jezowskia nizkotemperaturnaâudelʹnaâteploemkostʹmnogostennyhuglerodnyhnanotrubok AT szewczykd nizkotemperaturnaâudelʹnaâteploemkostʹmnogostennyhuglerodnyhnanotrubok AT bagatskimi nizkotemperaturnaâudelʹnaâteploemkostʹmnogostennyhuglerodnyhnanotrubok AT barabashkoms nizkotemperaturnaâudelʹnaâteploemkostʹmnogostennyhuglerodnyhnanotrubok AT ponomarevan nizkotemperaturnaâudelʹnaâteploemkostʹmnogostennyhuglerodnyhnanotrubok AT kuznetsovvl nizkotemperaturnaâudelʹnaâteploemkostʹmnogostennyhuglerodnyhnanotrubok AT moseenkovsi nizkotemperaturnaâudelʹnaâteploemkostʹmnogostennyhuglerodnyhnanotrubok AT sumarokovvv lowtemperaturespecificheatofmwcnts AT jezowskia lowtemperaturespecificheatofmwcnts AT szewczykd lowtemperaturespecificheatofmwcnts AT bagatskimi lowtemperaturespecificheatofmwcnts AT barabashkoms lowtemperaturespecificheatofmwcnts AT ponomarevan lowtemperaturespecificheatofmwcnts AT kuznetsovvl lowtemperaturespecificheatofmwcnts AT moseenkovsi lowtemperaturespecificheatofmwcnts |
| first_indexed |
2025-11-27T22:53:59Z |
| last_indexed |
2025-11-27T22:53:59Z |
| _version_ |
1849985905654235136 |
| fulltext |
Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3, pp. 395–403
The low-temperature specific heat of MWCNTs
V.V. Sumarokov1, A. Jeżowski2, D. Szewczyk2, M.I. Bagatski1, M.S. Barabashko1,3,
A.N. Ponomarev4, V.L. Kuznetsov5,6, and S.I. Moseenkov5
1B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine
47 Nauky Ave., Kharkiv 61103, Ukraine
E-mail: sumarokov@ilt.kharkov.ua
2W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences
P.O. Box 1410, Wroclaw 50–950, Poland
3National Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk 634050, Russia
4Institute of Strength Physics and Materials Science of SB RAS, 2/4 Academicheskii Ave., Tomsk 634055, Russia
5Boreskov Institute of Catalysis, 5 Lavrentiev Ave., Novosibirsk 630090, Russia
6National Research Tomsk State University, 36 Lenin Ave., Tomsk 634050, Russia
Received December 17, 2018
The specific heat of multi-walled carbon nanotubes (MWCNTs) with a low defectiveness and with a low con-
tent of inorganic impurities has been measured in the temperature range from 1.8 to 275 K by the thermal relaxa-
tion method. The elemental composition and morphology of the MWCNTs were determined using scanning
electron microscopy analysis and energy dispersion x-ray spectroscopy. The MWCNTs were prepared by chemi-
cal catalytic vapor deposition and have mean diameters from 7 nm up to 18 nm and lengths in some tens of mi-
crons. MWCNTs purity is over 99.4 at.%. The mass of the samples ranged from 2–4 mg. It was found that the
temperature dependence of the specific heat of the MWCNTs differs significantly from other carbon materials
(graphene, bundles of SWCNTs, graphite, diamond) at low temperatures. The specific heat of MWCNTs sys-
tematically decreases with increasing diameter of the tubes at low temperatures. The character of the temperature
dependence of the specific heat of the MWCNTs with different diameters demonstrates the manifestation of dif-
ferent dimensions from 1D to 3D, depending on the temperature regions. The crossover temperatures are about
6 and 40 K. In the vicinity of these temperatures, a hysteresis is observed.
Keywords: carbon nanotubes, MWCNTs, specific heat, low-dimensional systems.
Introduction
The discovery of carbon nanosystems (fullerenes,
SWCNTs, MWCNTs, graphene) led to a great interest in
both fundamental science and for applied purposes [1–9].
This is due to the peculiarities of their structures and unu-
sual physico-chemical properties. In particular, MWCNTs
are suitable objects for studying the physical properties of
low-dimensional systems. Carbon nanotubes have also at-
tracted great attention due to their potential technological
applications (nanoelectronics, construction materials, phar-
maceuticals, medicine, etc.) [10].
MWCNT is an isolated multi-layer roll of a graphene
sheet or a set of coaxial SWCNTs in the form of a Russian
nesting doll (Fig. 1). Between the layers, there is a weak
van der Waals bond. The average diameter of MWCNTs is
from a few to 100 nm. The distance between the atomic
graphene layers is about 0.34 nm as in graphite [3]. The
nanotube SWCNT is an elongated cylinder consisting of
Fig. 1. Schematic sketch of the most common MWCNTs. Their
multi-layered structure is a single-layer nanotube, “dressed” one
by one according to the principle of Russian nesting dolls (a) or
rolled up into a scroll of graphene sheet (b).
© V.V. Sumarokov, A. Jeżowski, D. Szewczyk, M.I. Bagatski, M.S. Barabashko, A.N. Ponomarev, V.L. Kuznetsov, and S.I. Moseenkov, 2019
V.V. Sumarokov et al.
equilateral hexagons with carbon atoms at their vertices.
This is a graphene plane rolled into a tube.
The physical properties of MWCNTs (in particular,
thermal properties) depend on the methods and technology
of tube preparation, their morphology, and the presence of
impurities and defects. Usually, multi-walled carbon nano-
tubes are prepared by CVD (chemical vapor deposition) or
AD (arc discharge) method with different catalysts, using
different technological procedures: temperature regimes,
purification methods, etc.
Studies of the specific heat of MWCNTs were carried out
by both experimental and theoretical methods. Yi et al. [11]
measured the specific heat and thermal conductivity of the
small array like samples of highly aligned MWCNTs (1–2 mm
long, with a cross-sectional diameter of 0.01–0.1 mm) by
the self-heating 3ω method. The diameter of the MWCNTs
was a few tens of nm, the walls of the nanotubes contained
10–30 layers. They found that the specific heat varies line-
arly in the temperature range of 10–300 K. The authors
note that because of the uncertainty of the number of
MWCNTs in array-like samples, the absolute values of the
thermal conductivity coefficient (and, hence, the heat capa-
city determined with its help) suffer from uncertainty.
Mizel et al. [12] used to study the specific heat of press-
ed small cylindrical samples of MWCNTs (tubes were with
outer diameters of order 10–20 nm and lengths exceed-
ing 10 μm) weighing 10–20 mg with a diameter of 3.2 mm
a thermal relaxation technique from 0.6 K up to 210 К. The
analysis showed that the C(T)/T2 curves for MWCNTs and
graphite coincide above 50 K. The curve C(T)/T2 for
graphite has a maximum at 40 K. The C(T)/T2 dependence
for the MWCNTs exceeds it for graphite below 40 K. And
the maximum of the MWCNTs curve shifts toward helium
temperatures. The similarity between C(T)/T2 for multi-
walled tubes and for graphite indicates that the two materi-
als are similar.
Masarapu et al. [13] measured the specific heat of align-
ed multi-walled carbon nanotubes (obtained by CVD me-
thod with diameters in the range of 20–30 nm and consist-
ing of 15–25 layers) in the temperature range from 1.8 to
250 K. They found that in the range of 40–250 K there is
a linear dependence of the specific heat. Below 40 K, the
specific heat gradually decreases, demonstrating a change
in dimension from 1D to 3D behavior, indicated by differ-
ent temperature dependences at low temperature. This be-
havior of the heat capacity was attributed to a dimensional
change in the density of states from 3D at low temperatures
to a reduced dimension at higher temperatures. Below 5 K,
the T–2 feature due to magnetic impurities was observed.
In the works of Jorge et al. [14,15], the specific heat of
MWCNTs was measured in the range of 10–120 K. Samples
with diameters of 90, 48 and 30 nm were obtained by the
CVD method. They have an aligned nanotube structure and
an internal bamboo-like structure within each MWCNT.
The authors found an anomalous peak at 60 K in these
samples. The parameters of the peak (height and tempera-
ture of the maximum) do not depend on the magnetic field
and do not exhibit thermal hysteresis [15].
Authors [16] showed that taking into account the elec-
tron contribution to the heat capacity depending on the dia-
meter of the nanotubes, the concentration of impurities, and
short-range order parameters (structural inhomogeneities)
allowed them to describe the peculiarities of low-temperature
behavior of the experimental specific heat of MWCNTs [15]
with large diameters and an internal bamboo-like structure.
However, according to Benedict et al. [17], the electron
contribution to the heat capacity of pure carbon tubes is
more than 100 times weaker than the phonon one.
Muratov et al. [18] using the adiabatic calorimetry
method carried out measurements of the heat capacity of
MWCNTs with an average diameter of less than 30 nm in
the temperature range from 60 to 300 K. They observed the
anomaly in heat capacity at temperatures of 80–90 K. The
authors believe that it is similar to that observed at about
60 K in [14]. The samples with a diameter of 25 nm [14]
and 17 nm [15], which were synthesized by the catalytic
decomposition of acetylene over iron nanoparticles, had a
forest distribution. The internal bamboo-like structure was
absent in these samples. The dimensional behavior crosso-
ver (change from quasi-linear behavior to a higher dimen-
sion) was observed at 33 K for samples with a larger diam-
eter of tubes and a bamboo-like internal structure and at
55 K for samples with diameters of 17 and 25 nm without
a bamboo-like internal structure.
Popov [19] calculated the low-temperature specific heat
of MWCNTs with different number n of layers within force-
constant dynamical models. The specific heat curves of
MWCNTs with n = 1–5 above 50–60 K coincide. At lower
temperatures, the curves diverge. This discrepancy increases
with decreasing temperature. At the same time, the degree
of temperature dependence increases from 0.5 for n = 1 to 1
for n = 5.
Brief information about the samples (morphology and
methods of preparation), methods and temperature ranges
of measurement of heat capacity in the reviewed papers are
presented in the Table 1.
The discrepancies between the experimental values of
the specific heats of different works may be due to differ-
ences in purity, in structure, in structural defects and heter-
ogeneities, in the diameters and quantities of the layers in
the MWCNTs samples and systematic errors. Systematic
errors are mainly caused by the presence of carbonic and
other impurities in the samples: gaseous helium (some-
times used to cool the calorimetric cell), catalyst residues,
atmospheric gases and other impurities. The authors
[16,20–24] showed that electron scattering by impurities
and structural inhomogeneities, such as non-uniformity of
the short-range order, can lead to anomalous behavior of
both the thermal, transport and electron properties of car-
bon nanomaterials.
396 Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3
The low-temperature specific heat of MWCNTs
In Hone’s study [25], it was found that the presence of
helium in bundles of SWCNTs leads to an anomalous be-
havior of the specific heat below 20 K (see Fig. 2 in
Ref. 25). Adsorbed Xe, N2, and CH4 impurities lead to a
significant increase in the specific heat of bundles of closed
single-wall carbon nanotubes at low temperatures [26–30].
For example, the concentration of several admixture nitro-
gen molecules per 1000 carbon atoms in bundles of single-
walled carbon nanotubes leads to an increase in the specif-
ic heat by a factor of 1.5 at ~ 2 K. Thus, thorough cleaning
of samples from gas impurities is an integral part of obtain-
ing precision data on the heat capacity of carbon nanoma-
terials.
In the reviewed papers, MWCNTs were obtained using
different methods and technologies. The analysis of the
discussed results is difficult due to the lack of complete in-
formation in a number of papers on the purity of
MWCNTs, measurement errors, etc. The results of meas-
urements of the specific heat vary greatly; especially in the
low-temperature region (see below Fig. 6). Despite inten-
sive experimental studies, the specific heat at constant
pressure of multilayer carbon nanotubes has not been com-
prehensively studied at low temperatures. Also, interest in
carbon nanotubes from the side of new applied problems
requires more extensive studies of their properties depend-
ing on their size, production technology, and so on.
The present paper is devoted to studies of the low-tem-
perature specific heat of multi-walled carbon nanotubes
with a controlled level of defectiveness and with a low
content of inorganic impurities in order to obtain infor-
mation about the effects of dimensionality in the thermo-
dynamics of MWCNTs with different diameters. We used
the system set of MWCNTs, obtained using the same type
of catalysts and defectiveness, which was characterized
using TEM (transmission electron microscopy), Raman
spectroscopy, XRF (x-ray fluorescence method), EDS (the
energy dispersive x-ray spectroscopy), and temperature
dependence of conductivity [31–37].
Experiment
The calorimetric studies of MWCNTs have been made
in the temperature range from 1.8 to 275 K. The specific
heat was measured using the thermal relaxation method.
The measurements were carried out on the physical proper-
ty measurement system (PPMS) from Quantum Design
Inc. operating in the heat capacity mode. A simplified draft
of the set-up is shown in Fig. 2 [38].
Measuring system (the so-called puck) consist of a
measuring platform on which a sample is anchored with an
Apiezon grease. After mounting the sample on the puck,
the chamber was sealed and cooled down to temperature
150 K. The measurements were carried out in high-vacuum
conditions. Each time, two series of run were performed.
During the first run measurements were performed from
150 K down to 2 K and from 2 K up to 275 K during the
second one. The temperature of the sample was measured
with the resistive thermometer Cernox (Lake Shore). The
under consideration samples of MWCNTs were cut out
from plates with thickness about 2–3 mm. The plates were
obtained by compacting the MWCNTs powder under the
pressure of 1.1 GPa as in Ref. 28.
MWCNTs were prepared using the CVD method by de-
composition of ethylene over the bimetallic Fe-Co/Al2O3
catalyst at 670°C Fe2Co as an active component [39,40].
This catalyst composition has been shown to provide
MWCNTs of low defectiveness [31] and with low content
Table 1. Brief information about the samples
Ref. Synthesis technique Average diameter, nm
(length)
Temperature interval, K Measuring technique Sample
mass
[12] AD1 10–20
(10 µm)
1–200 Thermal relaxation
technique
10–20 mg
[11] CVD2 20–40 10–300 Self-heating 3ω method
[15] CVD2 Sample A1 ∅903/∅584 6–120 Relaxation method 200 µg
CVD2 Sample B ∅483/∅214
Sample C ∅173/∅54
[18] CVD2 below 30 56–300 Adiabatic technique
[13] CVD2 20–30 (1–3 mm) 1.8–250 Relaxation technique 2.2 mg
Notes: 1 arc discharge technique, 2 chemical vapor deposition, 3 outer diameter of MWCNTs, 4 inside diameter of MWCNTs.
Fig. 2. Thermal connection scheme between a sample and
the measuring platform in PPMS heat capacity puck.
Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3 397
V.V. Sumarokov et al.
of inorganic impurities. Further refluxing of nanotubes
with 15% HCl (followed by washing with distilled water
until neutral pH and subsequent drying in air) allows de-
creasing the content of catalyst traces to 0.3–0.5 wt%. Pu-
rity of prepared MWCNTs powder is over 99.4 at.%. In-
formation about the chemical composition of the samples is
given in Table 2. In the experiment, 3 batches of MWCNTs
powders differing in mean tube diameters were used:
7.2 nm (s1), 9.4 nm (s2) and 18 nm (s3). Information on
the samples of the MWCNTs is given in Table 3. The mor-
phology of MWCNTs with different diameters is visible in
TEM images (Fig. 3). MWCNTs are not combined in bun-
dles, unlike SWCNTs.
Table 3. Information about the MWCNTs samples
Sample Mean diameter, nm Length, nm Mass, mg
s1 7.2 Up to 50000 2.35
s2 9.4 Up to 50000 2.37
s3 18 Up to 30000 4.3
Scanning electron microscopy (SEM) analysis was car-
ried out on JEOL JSM-7500FA at 20 kV to evaluate sur-
face morphology of the samples. Element composition and
concentration were measured by the energy dispersive x-ray
spectroscopy (EDS) [41].
The sample mass was specified with Sartorius CPA225D
semi-microbalance. The mass of the samples was 2.35 mg
(sample s1); 2.37 mg (sample s2) and 4.3 mg (sample s3)
(see Table 3). During the experiment, the heat exchanging
helium gas was not used for cooling of the calorimeter to
the low temperatures.
Measurement error did not exceed 2%. Other details of
the experiment were described elsewhere in Refs. 42, 43.
Results and discussion
The specific heat of MWCNTs with mean diameter of
7.2 nm (sample s1), 9.4 nm (s2) and 18 nm (s3) was meas-
ured in the temperature range from 2 to 275 K. The graphs
of the temperature dependence of the specific heat of the
studied samples are shown in Fig. 4. Figure 4 also displays
the curves of the temperature dependence of the specific
heat of graphene (theory) [25], bundles of SWCNTs (ex-
periment) [26], graphite (experiment) [44–46] and dia-
mond (experiment) [47,48].
It is noteworthy that the temperature dependences of
the specific heat for all carbon materials discussed, with
the exception of diamond, above 100 K are close: the dif-
ference in the results of studies does not exceed 15–30%.
The curves begin to diverge below 60–100 K.
The behavior of the temperature dependence for dia-
mond differs sharply from other carbon materials, which is
apparently due to the fact that diamond has a sp3 bond, in
contrast to the different forms of the sp2 bond for the re-
maining carbon materials. In diamond, carbon atoms are
strongly bonded with the nearest neighbors (sp3 hybridiza-
Table 2. Chemical atomic composition of the MWCNTs samples
Sample C
at.%
O
at.%
Si
at.%
Cl
at.%
Fe
at.%
Cr
at.%
Co
at.%
s1 99.49 0.24 0.07 0.01 0.17 0.02 0
s2 99.45 0.31 0 0.04 0.04 0 0.03
s3 99.72 0 0 0.01 0.17 0.01 0.09
Fig. 3. The TEM images of MWCNTs with mean diameter
7.2 nm (s1), 9.4 nm (s2) and 18 nm (s3).
s1
s2
s3
398 Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3
The low-temperature specific heat of MWCNTs
tion); there are very high frequencies of vibrational modes
and a high Debye temperature of about 2000 K [48].
In the allotropic forms of carbon: graphite, MWCNTs,
and bundles of SWCNTs, there are both strong (sp2 hyb-
ridization in the plane or on the nanotube surface) and
weak (van der Waals) interactions between the layers and
the walls of the tubes in bundles. The contribution of low-
frequency modes to the heat capacity of these allotropic
forms of carbon increases with decreasing temperature
below 300 K. As a result, below 300 K, the difference be-
tween the temperature dependence curve of the heat capac-
ity CP(T) of diamond and the curves of heat capacities
CP(T) of graphite, graphene, MWCNTs, and SWCNT
bundles increases with decreasing temperature.
The character of the low-temperature dependences of
graphite, MWCNTs, and SWCNTs bundles is qualitatively
similar, and the dimensionality effect in the heat capacity
of these materials is determined by the relative contribu-
tion of low-frequency vibrations. In anisotropic layered
graphite, carbon atoms form a hexagonal network and are
connected by strong covalent “flat” bonds (sp2 hybridiza-
tion) [49,50]. The Debye temperature due to vibrations of
carbon atoms in the plane is about ≈ 2500 K (higher than
in diamond [51]). Between the layers, the carbon atoms are
bound by weak van der Waals forces. At low temperatures,
the contribution to the heat capacity of graphite from low-
frequency vibrational modes dominates. From the analysis
of low-temperature data on the heat capacity of graphite,
Ramos et al. [45] found, that the Debye temperature is
ӨD ≈ 420 K, which is 5 times less than ӨD diamond. In
graphene, there are both high-frequency (vibrations of car-
bon atoms in the plane) and low-frequency (transverse
vibrations) vibrational modes.
In the SWCNTs bundles, there are high-frequency vi-
brations of carbon atoms on the nanotube surface due to
the strong interaction between carbon atoms (deformed sp2
hybridization) and low-frequency vibrational modes (trans-
verse vibrations of atoms, elastic longitudinal and torsional
vibrations of the tube as a whole).
When the wavelength of the transverse oscillations is
equal to or greater than the tube radius, the transverse radi-
al modes are quantized [25]. Both in the SWCNTs and in
multi-walled tubes, there is a weak interaction between the
walls of the tubes due to the van der Waals forces.
The low-energy part of the spectrum will change with
an increase in the number of tubes in bundles of SWCNTs
and the number of walls in MWCNTs. According to the
theory [19], an increase in the number of as single-walled
tubes in the SWCNT bundles as and layers in multi-walled
tubes leads to an increase in the frequency and a decrease
in the density of states in the low-energy part of the spec-
trum. This reflects the trend observed in the experiments
(present work and Refs. 12, 13).
The theoretical heat capacity curve for graphene [25]
(Fig. 4) demonstrates a linear dependence on temperature
and lies above the other curves below 60 K.
Above 6 K, the specific heat curves of MWCNTs (samples
s1 and s2, diameters of tubes: 7.2 and 9.4 nm, respectively)
and SWCNT bundles practically coincide. Below 6 K, the
curves for MWCNTs (s1 and s2) diverge from the SWCNTs
curve down towards graphite. Curves for MWCNTs sample
s3 and for graphite noticeably diverge from curves of our
samples s1 and s2 and graphene below 100 K. The curve
for sample s3 with a tube diameter of 18 nm diverges from
a graphite curve of about 30 K, below 30 K it lies higher
than graphite curve, but below the curves s1 and s2.
Fig. 4. (Color online) The temperature dependences of the specific heat of carbon materials. Theory: graphene [25] (1); Experiment:
SWСNT bundles [26] (2); MWCNTs: the samples s1 (3); s2 (4); s3 (5) (present work); graphite: [44] (6), [45] (7); [46] (8); diamond
[47] (9), [48] (10). (a) Entire temperature range; (b) Temperature range below 20 K.
Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3 399
V.V. Sumarokov et al.
Comparison of the obtained results with the literature
data showed that at temperatures below 6 K the specific
heat of MWCNTs decreases monotonically with an in-
crease in the average diameter of the tubes (see below
Fig. 6). The heat capacity curve MWCNTs (diameter 15 nm)
from Ref. 12 is located between our curves for samples s2
(∅9.4 nm) and s3 (∅18 nm), and the curve (∅25 nm) from
Ref. 13 lies below ours curve s3 (∅18 nm).
The results of Yi et al. [11], Jorge et al. [14,15] and
Muratov et al. [18] are qualitatively close to each other.
Below 60 K data of Yi et al. [11] and Jorge et al. [14,15]
lie above both present results and the data from Refs. 12, 13.
At 15 K, the data [11,14,15] exceed our results, the data
from Ref. 12 (∅15 nm) and Ref. 13 (∅25 nm) more than
2 times. Note that the nature of such difference, apparently,
is associated with a significant difference in the morpholo-
gy of the tubes. The authors of [16] believe that this may
be due to the manifestation of the electronic subsystem in
the defective — “dirty” samples.
For convenience of analysis, let us present the tempera-
ture dependence of the MWCNTs specific heat of meas-
ured samples s1 (∅7.2 nm), s2 (∅9.4 nm) and s3 (∅18 nm)
in coordinates C/T2 vs T as are shown in Fig. 5. The nature
of the temperature dependences of the heat capacity indi-
cates the behavior with different dimensions in different
temperature ranges. The curve s3 clearly shows how the
behavior of C(T) changes with temperature, corresponding
to a change in dimensionality from linear at high tempera-
tures to cubic at low temperatures through the quadratic at
intermediate temperatures.
The nature of the temperature dependence of the specific
heat of MWCNTs suggests that the manifestation of 1D–3D
dimensionality is due to the competition between the con-
tributions of low-frequency oscillations as in the tubes and
between the walls of the tubes and high-frequency oscilla-
tions on the surface of the tubes in the density of phonon
states. The dominant contribution is made by low-frequency
oscillations between the walls of the tubes, as can be seen in
the example of sample s3, in which the number of layers is
noticeably larger than in the tubes of samples s1 and s2.
The change in the behavior of the temperature dependence
of the specific heat with a quasi-1D dimension to a quasi-
2D is observed in the temperature range from about 40 to
200 K. The areas of crossovers are most brightly shown on
sample s3 with a diameter of 18 nm: about 6 and about 40 K.
Note that temperature hysteresis is observed in these areas.
The quadratic temperature dependence of the specific heat
is from 6 to 40 K. With the decrease of the diameter of the
MWCNTs, the T2-temperature dependence is blurred and
the absolute values of the heat capacity increase.
At the same time, an analysis of the temperature depend-
ences of the specific heats of literature data on graphite,
SWCNT bundles, MWCNTs [12,13,26,44–46] shows that
at the temperature close to 40 K a feature is observed —
a crossover from quasi-1D to quasi-two-dimensional be-
havior (see Fig. 6). Neutron studies [52–54] show that the
curves of the density of states for SWCNTs and graphite
exhibit anomalies at energies of 2.5–3.5 meV and 16 meV
(see Figs. 17–19 in Ref. 54 and Fig. 5 in Ref. 52), which
correspond to the temperatures of the anomalies in heat ca-
pacity. Note that, as in the studies of heat capacity and ther-
mal expansion [26], the temperature dependence of elec-
trical conductivity [55] also exhibits a feature near 30 K.
According to the authors of [55], this feature is due to
Fig. 5. (Color online) The specific heat of the studied samples
s1 (1), s2 (2) and s3 (3) in coordinates C/T2 vs T. Crossover tem-
peratures are indicated by arrows.
Fig. 6. (Color online) The specific heat in coordinates C/T2 vs T:
bundles of SWCNTs [26] (1); the MWSNT sample s1 (∅7.2 nm) (2);
the MWSNT sample s2 (∅9.4 nm) (3); MWSNTs (∅ ~ 15 nm)
[12] (4); the MWSNT sample s3 (∅18 nm) (5); MWSNTs
(∅ ~ 25 nm) [13] (6); graphite: [44] (7), [45] (8).
400 Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3
The low-temperature specific heat of MWCNTs
the change in the mechanism of conductivity in a system
oriented of SWCNTs from the state of the Luttinger liquid
to the Mott dielectric phase in the temperature range 25–36 K.
Also features in temperature dependences of conductivity
(with diameters from 5.8 to 25 nm) and magnetoresistance
(with diameters from 8.7 to 25 nm) MWCNTs (tubes simi-
lar to ours) were observed at temperatures below 50 K (see
Fig. 2 in Ref. 32).
Conclusion
The specific heats of systematic set of MWCNTs with
variable external diameters and number of graphene walls
have been measured from 2 to 275 K by the thermal re-
laxation method. The elemental composition and morpho-
logy of the MWCNTs were determined using scanning
electron microscopy analysis and energy dispersion x-ray
spectroscopy. The MWCNTs prepared by chemical cata-
lytic vapor deposition contained over 99.4 at.%, which have
mean diameters from 7 nm up to 18 nm and lengths in
some tens of microns. It was found that the low-tempera-
ture dependence of the specific heat of the MWCNTs of
the studied samples differs significantly from other carbon
materials (graphene, graphite, diamond) at low tempera-
tures. It was also found that the specific heat of MWCNTs
systematically decreases with increasing diameter of the
tubes at low temperatures. The character of the temperature
dependence of the specific heat of the MWCNTs samples
with different diameters demonstrates the manifestation of
different dimensionality from 1D to 3D, depending on the
temperature regions. The crossover temperatures are about
6 and 40 K. In the vicinity of these temperatures, a temper-
ature hysteresis is observed.
Acknowledgments
The authors thank Scientific and educational innovation
center “Nanomaterials and nanotechnologies”, National
Research Tomsk Polytechnic University for help in x-ray
diffraction measurements and SEM-EDS analysis of the
samples MWNCTs that were carried out within the frame-
work of Tomsk Polytechnic University Competitiveness
Enhancement Program.
_______
1. A.V. Eletskii, Usp. Phys. Nauk 167, 945 (1997) [Phys. Usp.
40, 899 (1997)].
2. A.V. Eletskii, Usp. Phys. Nauk 179, 225 (1997) [Phys. Usp.
52, 209 (2009)].
3. M.S. Dresselhaus, Carbon Nanotubes: Synthesis, Structure,
Properties, and Applications, Springer-Verlag (2000).
4. Carbon Nanotubes: Science and Application, M. Meyyappan
(ed.), CRC Press, Boca Raton, London, New York, Wa-
shington D.C. (2005).
5. Carbon Nanotubes, A. Jorio, G. Dresselhaus, and M.S.
Dresselhaus (eds.), Springer-Verlag, Berlin, Heidelberg,
New York (2008).
6. A. Szabo, C. Perri, A. Csato, G. Giordano, D. Vuono, and
J.B. Nagy, Materials 3, 3092 (2010).
7. S. Bellucci, Phys. Status Solidi C 2, 34 (2005).
8. M. Endo, M.S. Strano, and P.M. Ajayan, Potential Appli-
cations of Carbon Nanotubes, in: Carbon Nanotubes. Topics
in Applied Physics, A. Jorio, G. Dresselhaus, and M.S.
Dresselhaus (eds.), Springer-Verlag, Berlin Heidelberg New
York (2008).
9. M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, and A.J.
Hart, Science 339 (6119), 535 (2013).
10. Industrial Applications of Carbon Nanotubes, Huisheng Peng,
Qingwen Li, and Tao Chen (eds.), Elsevier, Amsterdam, UK,
US (2017).
11. W. Yi, L. Lu, Zhang Dian-lin, Z.W. Pan, and S.S. Xie, Phys.
Rev. B 59, R9015 (1999).
12. A. Mizel, L.X.Benedict, M.L. Cohen, S.G. Louie, A. Zettl,
N.K. Budraa, and W.P. Beyermann, Phys. Rev. B 60, 3264
(1999).
13. C. Masarapu, L.L. Henry, and B. Wei, Nanotechnology 16,
1490 (2005).
14. G.A. Jorge, V. Bekeris, C. Acha, M.M. Escobar, S. Goyanes,
D. Zilli, and R.J. Candal, J. Phys.: Conf. Ser. 167, 012008
(2009).
15. G.A. Jorge, V. Bekeris, M.M. Escobar, S. Goyanes, D. Zilli,
A.L. Cukierman, and R.J. Candal, Carbon 48, 525 (2010).
16. A.N. Ponomarev, V.E. Egorushkin, N.V. Melnikova, and
N.G. Bobenko, Physica E 66, 13 (2015).
17. L.X. Benedict and S.G. Louie, and M.L. Cohen, Solid State
Commun. 100, 177 (1996).
18. V.B. Muratov, O.O. Vasil’ev, L.M. Kulikov, V.V. Garbuz,
Y.V. Nesterenko, and T.I. Duda, J. Superhard Materials
34(3), 173 (2012).
19. V.N. Popov, Phys. Rev. B 66, 153408 (2002).
20. N.G. Bobenko, V.E. Egorushkin, N.V. Melnikova, A.A.
Belosludtseva, L.D. Barkalov, and A.N. Ponomarev, J. Struct.
Chem. 59, 853 (2018).
21. N.G. Bobenko, V.E. Egorushkin, N.V. Melnikova, and A.N.
Ponomarev, Physica E 60, 11 (2014).
22. V.E. Egorushkin, N.V. Melnikova, A.N. Ponomarev, and
A.A. Reshetnyak, J. Phys.: Conf. Ser. 248, 012005 (2010).
23. M.S. Barabashko, A.E. Rezvanova, and A.N. Ponomarev,
Fullerenes, Nanotubes and Carbon Nanostructures 25, 661
(2017).
24. V. Egorushkin, N. Melnikova, A. Ponomarev, and N. Bobenko,
J. Mat. Sci. Eng. A 1, 161 (2011).
25. J. Hone, Science 289 (5485), 1730 (2000).
26. M.I. Bagatskii, M.S. Barabashko, A.V. Dolbin, V.V. Sumarokov,
and B. Sundqvist, Fiz. Nizk. Temp. 38, 667 (2012) [Low
Temp. Phys. 38, 523 (2012)].
27. M.I. Bagatskii, M.S. Barabashko, and V.V. Sumarokov, Fiz.
Nizk. Temp. 39, 568 (2013) [Low Temp. Phys. 39, 441 (2013)].
28. M.I. Bagatskii, M.S. Barabashko, and V.V. Sumarokov,
Pis’ma v Zh. Èksper. Teoret. Fiz. 99, 532 (2014) [JETP Lett.
99, 461 (2014)].
29. M.I. Bagatskii, V.V. Sumarokov, and M.S. Barabashko, Fiz.
Nizk. Temp. 42, 128 (2016) [Low Temp. Phys. 42, 94 (2016)].
Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3 401
https://doi.org/10.1070/PU1997v040n09ABEH000282
https://doi.org/10.3367/UFNe.0179.200903a.0225
https://doi.org/10.3390/ma3053092
https://doi.org/10.1002/pssc.200460105
https://doi.org/10.1126/science.1222453
https://doi.org/10.1103/PhysRevB.59.R9015
https://doi.org/10.1103/PhysRevB.59.R9015
https://doi.org/10.1103/PhysRevB.60.3264
https://doi.org/10.1088/0957-4484/16/9/013
https://doi.org/10.1088/1742-6596/167/1/012008
https://doi.org/10.1016/j.carbon.2009.09.073
https://doi.org/10.1016/j.physe.2014.09.005
https://doi.org/10.1016/0038-1098(96)00386-9
https://doi.org/10.1016/0038-1098(96)00386-9
https://doi.org/10.3103/S1063457612030045
https://doi.org/10.1103/PhysRevB.66.153408
https://doi.org/10.1134/S0022476618040157
https://doi.org/10.1134/S0022476618040157
https://doi.org/10.1016/j.physe.2014.01.026
https://doi.org/10.1088/1742-6596/248/1/012005
https://doi.org/10.1080/1536383X.2017.1391225
https://doi.org/10.1126/science.289.5485.1730
https://doi.org/10.1063/1.4723677
https://doi.org/10.1063/1.4723677
https://doi.org/10.1063/1.4807048
https://doi.org/10.1134/S0021364014080049
https://doi.org/10.1063/1.4942395
V.V. Sumarokov et al.
30. M.I. Bagatskii, M.S. Barabashko, V.V.Sumarokov, A. Jeżowski,
and P. Stachowiak, J. Low Temp. Phys. 187, 113 (2017).
31. V.L. Kuznetsov, S.N. Bokova-Sirosh, S.I. Moseenkov, A.V.
Ishchenko, D.V. Krasnikov, M.A. Kazakova, and E.D.
Obraztsova, Phys. Status Solidi B 251, 2444 (2014).
32. A.I. Romanenko, O.B. Anikeeva, T.I. Buryakov, E.N. Tkachev,
K.R. Zhdanov, V.L.Kuznetsov, I.N. Mazov, and A.N. Usoltseva,
Phys. Status Solidi B 246, 2641 (2009).
33. A.I. Romanenko, O.B. Anikeeva, T.I. Buryakov, E.N. Tkachev,
K.R. Zhdanov, V.L. Kuznetsov I.N. Mazov, A.N. Usoltseva,
and A.V. Ischenko, Diamond & Related Materials 19, 964
(2010).
34. K.V. Elumeeva, V.L. Kuznetsov, A.V. Ischenko, R. Smajda,
M. Spina, L. Forro, and A. Magrez, AIP Adv. 3, 112101
(2013).
35. S.N. Bokova-Sirosh, V.L. Kuznetsov, A.I. Romanenko,
M.A. Kazakova, D.V. Krasnikov, E.N. Tkachev, Y.I. Yuzyuk,
and E.D. Obraztsova, J. Nanophotonics 10, 012526 (2016).
36. V.L. Kuznetsov, K.V. Elumeeva, A.V. Ishchenko, N.Yu.
Beylina, A.A. Stepashkin, S.I. Moseenkov, L.M. Plyasova,
I.Yu. Molina, A.I. Romanenko, O.B. Anikeeva, and E.N.
Tkachev, Phys. Status Solidi B 247, 2695 (2010).
37. S.N. Bokova, E.D. Obraztsova, V.V. Grebenyukov, K.V.
Elumeeva, A.V. Ishchenko, and V.L. Kuznetsov, Phys.
Status Solidi B 247, 2827 (2010).
38. PPMS Manual–Heat Capacity Option User’s Manual,
https://web.njit.edu/~tyson/PPMS_Documents/PPMS_Manu
al/1085–150%20Heat%20Capacity.pdf
39. A. Usoltseva, V. Kuznetsov, N. Rudina, E. Moroz, M. Haluska,
and S. Roth, Phys. Status Solidi B 244, 3920 (2007).
40. V.L. Kuznetsov, D.V. Krasnikov, A.N. Schmakov, and K.V.
Elumeeva, Phys. Status Solidi B 249, 2390 (2012).
41. I.N. Mazov, I.A. Ilinykh, V.L. Kuznetsov, A.A. Stepashkin,
K.S. Ergin, D.S. Muratov, and J.-P. Issi, J. Alloys Com-
pounds 586, S440 (2014).
42. D. Szewczyk and A. Jeżowski, J. Edu. Tech. Sci. 2, 22 (2015).
43. D. Szewczyk, A. Jeżowski, A.I. Krivchikov, and J.L. Tamarit,
Fiz. Nizk. Temp. 41, 598 (2015) [Low Temp. Phys. 41, 469
(2015)].
44. T. Nihira and T. Iwata, Phys. Rev. B 68, 134305 (2003).
45. T. Pérez-Castañeda, J. Azpeitia, J. Hanko, A. Fente, H. Suderow,
and M.A. Ramos, J. Low Temp. Phys. 173, 4 (2013).
46. M.G. Alexander, D.P. Goshorn, and D.G. Onn, Phys. Rev. B
22, 4535 (1980).
47. O.O. Vasil’ev, V.B. Muratov, and T.I. Duda, J. Super. Mat.
32, 375 (2010).
48. W. DeSorbo, J. Chem. Phys. 21, 876 (1953).
49. A.N. Obraztsov, E.A. Obraztsova, A.V. Tyurnina, and A.A.
Zolotukhin, Carbon 45, 2017 (2007).
50. J.W. McClure, Phys. Rev. 108, 612 (1957).
51. I.A. Gospodarev, V.I. Grishaev, E.V. Manzhelii, E.S. Syrkin,
S.B. Feodosyev, and K.A. Minakova, Fiz. Nizk. Temp. 43,
322 (2017) [Low Temp. Phys. 43, 264 (2017)].
52. S. Rols, E. Anglare, J.L. Sauvajol, G. Coddens, and A.J.
Dianoux, Appl. Phys. A 69, 591 (1999).
53. S. Rols, Z. Benes, E. Anglaret, J.L. Sauvajol, P. Papanek,
J.E. Fisher, G. Goddens, H. Schober, and A.J. Dianoux,
Phys. Rev. Lett. 85, 5222 (2000).
54. J.L. Sauvajol, E. Anglaret, S. Rols, and L. Alvarez, Carbon
40, 1697 (2002).
55. B.A. Danilchenko, L.I. Shpinar, N.A. Tripachko, E.A.
Voitsihovska, S.E. Zelensky, and B. Sundqvist, Appl. Phys.
Lett. 97, 072106 (2010).
___________________________
Низькотемпературна питома теплоємність
багатостінних вуглецевих нанотрубок
В.В. Сумароков, A. Jeżowski, D. Szewczyk,
М.І. Багацький, М.С. Барабашко, А.Н. Пономарьов,
В.Л. Кузнецов, С.І. Мосєєнков
Питому теплоємність багатостінних вуглецевих нанотру-
бок (БСВНТ) з низькою дефектністю та низьким вмістом не-
органічних домішок виміряно в діапазоні температур 1,8–275 К
методом теплової релаксації. Зразки БСВНТ отримано хіміч-
ним каталітичним осадженням з парової фази. Елементний
склад і морфологію БСВНТ визначено за допомогою скану-
ючої електронної мікроскопії та енергодисперсійної рентге-
нівської спектроскопії. Нанотрубки мали середній діаметр
від 7 до 18 нм і довжину в кілька десятків мікрон. Чистота
БСВНТ була більш ніж 99,4 ат.%. Маса зразків становила від
2 до 4 мг. Виявлено, що температурна залежність питомої
теплоємності БСВНТ значно відрізняється від теплоємності
інших вуглецевих матеріалів (графена, в’язок ОСВНТ, графі-
ту, алмазу) при низьких температурах. Теплоємність БСВНТ
систематично зменшується зі збільшенням діаметра нанот-
рубок при низьких температурах. Температурні залежності
питомої теплоємності БСВНТ з різними діаметрами демон-
струють притаманний низьковимірним системам характер
від 1D до 3D в залежності від температурних областей. Тем-
ператури кросовера складають близько 6 та 40 К. Поблизу
цих температур спостерігається гістерезис.
Ключові слова: вуглецеві нанотрубки, БСВНТ, питома теп-
лоємність, нізьковимірні системи.
Низкотемпературная удельная теплоемкость
многостенных углеродных нанотрубок
В.В. Сумароков, A. Jeżowski, D. Szewczyk,
М.И. Багацкий, М.С. Барабашко, А.Н. Пономарев,
В.Л. Кузнецов, С.И. Мосеенков
Удельная теплоемкость многостенных углеродных нано-
трубок (МСУНТ) с низкой дефектностью и низким содер-
жанием неорганических примесей измерена в диапазоне тем-
ператур 1,8–275 К методом тепловой релаксации. Образцы
МСУНТ получены химическим каталитическим осаждением
402 Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3
https://doi.org/10.1007/s10909-016-1737-z
https://doi.org/10.1002/pssb.201451195
https://doi.org/10.1002/pssb.200982267
https://doi.org/10.1016/j.diamond.2010.02.035
https://doi.org/10.1063/1.4829272
https://doi.org/10.1117/1.JNP.10.012526
https://doi.org/10.1002/pssb.201000211
https://doi.org/10.1002/pssb.201000237
https://doi.org/10.1002/pssb.201000237
https://web.njit.edu/%7Etyson/PPMS_Documents/PPMS_Manual/1085-150%20Heat%20Capacity.pdf
https://web.njit.edu/%7Etyson/PPMS_Documents/PPMS_Manual/1085-150%20Heat%20Capacity.pdf
https://doi.org/10.1002/pssb.200776143
https://doi.org/10.1002/pssb.201200120
https://doi.org/10.1016/j.jallcom.2012.10.167
https://doi.org/10.1016/j.jallcom.2012.10.167
https://doi.org/10.1063/1.4922101
https://doi.org/10.1103/PhysRevB.68.134305
https://doi.org/10.1007/s10909-013-0884-8
https://doi.org/10.1103/PhysRevB.22.4535
https://doi.org/10.3103/S106345761006002X
https://doi.org/10.1063/1.1699050
https://doi.org/10.1016/j.carbon.2007.05.028
https://doi.org/10.1103/PhysRev.108.612
https://doi.org/10.1063/1.4978291
https://doi.org/10.1007/s003390051037
https://doi.org/10.1103/PhysRevLett.85.5222
https://doi.org/10.1016/S0008-6223(02)00010-6
https://doi.org/10.1063/1.3467464
https://doi.org/10.1063/1.3467464
The low-temperature specific heat of MWCNTs
из паровой фазы. Элементный состав и морфология МСУНТ
определены с помощью сканирующей электронной микро-
скопии и энергодисперсионной рентгеновской спектроско-
пии. Нанотрубки имели средний диаметр от 7 до 18 нм и
длину в несколько десятков микрон. Чистота МСУНТ более
99,4 ат.%. Масса образцов составляла от 2 до 4 мг. Обнаруже-
но, что температурная зависимость удельной теплоемкости
МСУНТ значительно отличается от теплоемкости других
углеродных материалов (графена, связок ОСУНТ, графита,
алмаза) при низких температурах. Теплоемкость МСУНТ
систематически уменьшается с увеличением диаметра нанот-
рубок при низких температурах. Температурные зависимости
удельной теплоемкости МСУНТ с разными диаметрами де-
монстрируют присущий низкоразмерным системам характер
от 1D до 3D в зависимости от температурных областей. Тем-
пературы кроссовера составляют около 6 и 40 К. Вблизи этих
температур наблюдается гистерезис.
Ключевые слова: углеродные нанотрубки, МСУНТ, удельная
теплоемкость, низкоразмерные системы.
Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3 403
Introduction
Experiment
Results and discussion
Conclusion
Acknowledgments
|