Investigation of the low-temperature mechanical behavior of elastomers and their carbon nanotube composites using microindentation

The micromechanical properties of epoxy resin elastomers and their carbon nanotube composites were studied using a microhardness tester equipped with low-temperature chamber. X-ray diffraction analysis indicated that all specimens were free of any crystalline components and were amorphous with onl...

Full description

Saved in:
Bibliographic Details
Published in:Физика низких температур
Date:2019
Main Authors: Fomenko, L.S., Lubenets, S.V., Natsik, V.D., Prokhvatilov, A.I., Galtsov, N.N., Li, Q.Q., Koutsos, V.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2019
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/176128
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Investigation of the low-temperature mechanical behavior of elastomers and their carbon nanotube composites using microindentation / L.S. Fomenko, S.V. Lubenets, V.D. Natsik, A.I. Prokhvatilov, N.N. Galtsov, Q.Q. Li, V. Koutsos // Физика низких температур. — 2019. — Т. 45, № 5. — С. 663-672. — Бібліогр.: 23 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-176128
record_format dspace
spelling Fomenko, L.S.
Lubenets, S.V.
Natsik, V.D.
Prokhvatilov, A.I.
Galtsov, N.N.
Li, Q.Q.
Koutsos, V.
2021-02-03T18:02:46Z
2021-02-03T18:02:46Z
2019
Investigation of the low-temperature mechanical behavior of elastomers and their carbon nanotube composites using microindentation / L.S. Fomenko, S.V. Lubenets, V.D. Natsik, A.I. Prokhvatilov, N.N. Galtsov, Q.Q. Li, V. Koutsos // Физика низких температур. — 2019. — Т. 45, № 5. — С. 663-672. — Бібліогр.: 23 назв. — англ.
0132-6414
https://nasplib.isofts.kiev.ua/handle/123456789/176128
The micromechanical properties of epoxy resin elastomers and their carbon nanotube composites were studied using a microhardness tester equipped with low-temperature chamber. X-ray diffraction analysis indicated that all specimens were free of any crystalline components and were amorphous with only short-range order domains. The Vickers microhardness of all samples has been estimated in the temperature range 230–300 K. The measurements demonstrated that at room temperature these materials are elastomers (notably, they are in high-elastic state) and on cooling in the range of 250–270 K the glass transition takes place. Analysis of the temperature dependence of microhardness suggested that the thermomechanical and relaxation properties of the materials studied are consistent with a rheological model of a standard linear solid where the relaxation time (or viscosity) depends exponentially on the temperature in accordance with the Arrhenius equation for the rate of thermally activated process. Empirical estimates for the nonrelaxed and relaxed Young’s moduli and also for the activation energy (U = 0.75 eV) and the period of attempts (τ0 = 10⁻¹² s) of the molecular process which determines the relaxation properties and the glass transition of the materials have been obtained. The addition of carbon nanotubes into elastomeric epoxy resin had no effect on its micromechanical characteristics as measured by the microhardness tester. It is shown that the conventional microindentation method is an efficient tool of investigating the thermomechanical properties of elastomers nearby and below the glass transition temperature.
За допомогою мікротвердоміра з низькотемпературним пристроєм вивчено механічні властивості епоксидної смоли та нанокомпозитів епоксидна смола–вуглецеві нанотрубки. Аналіз дифракції рентгенівських променів показав, що всі зразки не містять кристалічних складових та є аморфними з доменами близького порядку. Оцінено мікротвердість всіх зразків в інтервалі температур 230–300 К. Вимірювання показали, що при кімнатній температурі ці матеріали мають властивості еластомерів (тобто знаходяться у високоеластичному стані), а в інтервалі температур 250–270 К має місце перехід у стан скла. Аналіз температурної залежності мікротвердості показав, що термомеханічні та релаксаційні властивості вивчених матеріалів узгоджуються з реологічною моделлю стандартного лінійного твердого тіла, для якого час релаксації (або в'язкість) експоненціально залежить від температури згідно з рівнянням Арреніуса для швидкості термоактивованого процесу. Одержано емпіричні оцінки нерелаксованого і релаксованого модулів Юнга, а також енергії активації (U = 0,75 еВ) і періоду спроб (τ0 = 10⁻¹² с) молекулярного процесу, який визначає релаксаційні властивості та перехід матеріалів у стан скла. Додавання вуглецевих нанотрубок в епоксидну смолу не вплинуло на мікромеханічні характеристики. Показано, що традиційний метод мікроіндентування — це ефективний спосіб вивчення термомеханічних властивостей еластомерів поблизу та нижче температури переходу у стан скла.
С помощью микротвердомера с низкотемпературной приставкой изучены механические свойства эпоксидной смолы и нанокомпозитов эпоксидная смола–углеродные нанотрубки. Анализ дифракции рентгеновских лучей показал, что все образцы не содержали кристаллических составляющих и являлись аморфными с доменами ближнего порядка. Оценена микротвердость всех образцов в интервале температур 230–300 К. Измерения показали, что при комнатной температуре эти материалы являются эластомерами (т.е. находятся в высокоэластическом состоянии), а в интервале температур 250–270 К имеет место переход в состояние стекла. Анализ температурной зависимости микротвердости показал, что термомеханические и релаксационные свойства изученных материалов согласуются с реологической моделью стандартного линейного твердого тела, для которого время релаксации (или вязкость) экспоненциально зависит от температуры в соответствии с уравнением Аррениуса для скорости термоактивированного процесса. Получены эмпирические оценки нерелаксированного и релаксированного модулей Юнга, а также энергии активации (U = 0,75 эВ) и периода попыток (τ0 = 10⁻¹² с) молекулярного процесса, определяющего релаксационные свойства и переход материалов в состояние стекла. Добавление углеродных нанотрубок в эпоксидную смолу не повлияло на микромеханические характеристики. Показано, что традиционный метод микроиндентирования является эффективным способом для изучения термомеханических свойств эластомеров вблизи и ниже температуры перехода в состояние стекла. Ключевые слова: аморфные эластомеры и их углеродные нанокомпозиты, микроиндентирование, низкотемпературная микротвердость, релаксационные свойства, стеклование.
The Kharkiv authors thank Dr. A. A. Solodovnik for the vacuum deposition of metal films on the specimen surfaces of elastomers, and Professor Yu.V. Milman for help with the instrumented microhardness measurement of elastomers. Financial support from National Academy of Sciences of Ukraine (project No. 0118U100347) is gratefully acknowledged.
en
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
Физика низких температур
Низькотемпеpатуpна фізика пластичності та міцності
Investigation of the low-temperature mechanical behavior of elastomers and their carbon nanotube composites using microindentation
Дослідження низькотемпературних механічних властивостей еластомерів та їх композитів з вуглецевими нанотрубками з використанням мікроіндентування
Исследование низкотемпературных механических свойств эластомеров и их композитов с углеродными нанотрубками с использованием микроиндентирования
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Investigation of the low-temperature mechanical behavior of elastomers and their carbon nanotube composites using microindentation
spellingShingle Investigation of the low-temperature mechanical behavior of elastomers and their carbon nanotube composites using microindentation
Fomenko, L.S.
Lubenets, S.V.
Natsik, V.D.
Prokhvatilov, A.I.
Galtsov, N.N.
Li, Q.Q.
Koutsos, V.
Низькотемпеpатуpна фізика пластичності та міцності
title_short Investigation of the low-temperature mechanical behavior of elastomers and their carbon nanotube composites using microindentation
title_full Investigation of the low-temperature mechanical behavior of elastomers and their carbon nanotube composites using microindentation
title_fullStr Investigation of the low-temperature mechanical behavior of elastomers and their carbon nanotube composites using microindentation
title_full_unstemmed Investigation of the low-temperature mechanical behavior of elastomers and their carbon nanotube composites using microindentation
title_sort investigation of the low-temperature mechanical behavior of elastomers and their carbon nanotube composites using microindentation
author Fomenko, L.S.
Lubenets, S.V.
Natsik, V.D.
Prokhvatilov, A.I.
Galtsov, N.N.
Li, Q.Q.
Koutsos, V.
author_facet Fomenko, L.S.
Lubenets, S.V.
Natsik, V.D.
Prokhvatilov, A.I.
Galtsov, N.N.
Li, Q.Q.
Koutsos, V.
topic Низькотемпеpатуpна фізика пластичності та міцності
topic_facet Низькотемпеpатуpна фізика пластичності та міцності
publishDate 2019
language English
container_title Физика низких температур
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
format Article
title_alt Дослідження низькотемпературних механічних властивостей еластомерів та їх композитів з вуглецевими нанотрубками з використанням мікроіндентування
Исследование низкотемпературных механических свойств эластомеров и их композитов с углеродными нанотрубками с использованием микроиндентирования
issn 0132-6414
url https://nasplib.isofts.kiev.ua/handle/123456789/176128
citation_txt Investigation of the low-temperature mechanical behavior of elastomers and their carbon nanotube composites using microindentation / L.S. Fomenko, S.V. Lubenets, V.D. Natsik, A.I. Prokhvatilov, N.N. Galtsov, Q.Q. Li, V. Koutsos // Физика низких температур. — 2019. — Т. 45, № 5. — С. 663-672. — Бібліогр.: 23 назв. — англ.
work_keys_str_mv AT fomenkols investigationofthelowtemperaturemechanicalbehaviorofelastomersandtheircarbonnanotubecompositesusingmicroindentation
AT lubenetssv investigationofthelowtemperaturemechanicalbehaviorofelastomersandtheircarbonnanotubecompositesusingmicroindentation
AT natsikvd investigationofthelowtemperaturemechanicalbehaviorofelastomersandtheircarbonnanotubecompositesusingmicroindentation
AT prokhvatilovai investigationofthelowtemperaturemechanicalbehaviorofelastomersandtheircarbonnanotubecompositesusingmicroindentation
AT galtsovnn investigationofthelowtemperaturemechanicalbehaviorofelastomersandtheircarbonnanotubecompositesusingmicroindentation
AT liqq investigationofthelowtemperaturemechanicalbehaviorofelastomersandtheircarbonnanotubecompositesusingmicroindentation
AT koutsosv investigationofthelowtemperaturemechanicalbehaviorofelastomersandtheircarbonnanotubecompositesusingmicroindentation
AT fomenkols doslídžennânizʹkotemperaturnihmehaníčnihvlastivosteielastomerívtaíhkompozitívzvugleceviminanotrubkamizvikoristannâmmíkroíndentuvannâ
AT lubenetssv doslídžennânizʹkotemperaturnihmehaníčnihvlastivosteielastomerívtaíhkompozitívzvugleceviminanotrubkamizvikoristannâmmíkroíndentuvannâ
AT natsikvd doslídžennânizʹkotemperaturnihmehaníčnihvlastivosteielastomerívtaíhkompozitívzvugleceviminanotrubkamizvikoristannâmmíkroíndentuvannâ
AT prokhvatilovai doslídžennânizʹkotemperaturnihmehaníčnihvlastivosteielastomerívtaíhkompozitívzvugleceviminanotrubkamizvikoristannâmmíkroíndentuvannâ
AT galtsovnn doslídžennânizʹkotemperaturnihmehaníčnihvlastivosteielastomerívtaíhkompozitívzvugleceviminanotrubkamizvikoristannâmmíkroíndentuvannâ
AT liqq doslídžennânizʹkotemperaturnihmehaníčnihvlastivosteielastomerívtaíhkompozitívzvugleceviminanotrubkamizvikoristannâmmíkroíndentuvannâ
AT koutsosv doslídžennânizʹkotemperaturnihmehaníčnihvlastivosteielastomerívtaíhkompozitívzvugleceviminanotrubkamizvikoristannâmmíkroíndentuvannâ
AT fomenkols issledovanienizkotemperaturnyhmehaničeskihsvoistvélastomeroviihkompozitovsuglerodnyminanotrubkamisispolʹzovaniemmikroindentirovaniâ
AT lubenetssv issledovanienizkotemperaturnyhmehaničeskihsvoistvélastomeroviihkompozitovsuglerodnyminanotrubkamisispolʹzovaniemmikroindentirovaniâ
AT natsikvd issledovanienizkotemperaturnyhmehaničeskihsvoistvélastomeroviihkompozitovsuglerodnyminanotrubkamisispolʹzovaniemmikroindentirovaniâ
AT prokhvatilovai issledovanienizkotemperaturnyhmehaničeskihsvoistvélastomeroviihkompozitovsuglerodnyminanotrubkamisispolʹzovaniemmikroindentirovaniâ
AT galtsovnn issledovanienizkotemperaturnyhmehaničeskihsvoistvélastomeroviihkompozitovsuglerodnyminanotrubkamisispolʹzovaniemmikroindentirovaniâ
AT liqq issledovanienizkotemperaturnyhmehaničeskihsvoistvélastomeroviihkompozitovsuglerodnyminanotrubkamisispolʹzovaniemmikroindentirovaniâ
AT koutsosv issledovanienizkotemperaturnyhmehaničeskihsvoistvélastomeroviihkompozitovsuglerodnyminanotrubkamisispolʹzovaniemmikroindentirovaniâ
first_indexed 2025-12-01T09:37:19Z
last_indexed 2025-12-01T09:37:19Z
_version_ 1850859818540072960
description The micromechanical properties of epoxy resin elastomers and their carbon nanotube composites were studied using a microhardness tester equipped with low-temperature chamber. X-ray diffraction analysis indicated that all specimens were free of any crystalline components and were amorphous with only short-range order domains. The Vickers microhardness of all samples has been estimated in the temperature range 230–300 K. The measurements demonstrated that at room temperature these materials are elastomers (notably, they are in high-elastic state) and on cooling in the range of 250–270 K the glass transition takes place. Analysis of the temperature dependence of microhardness suggested that the thermomechanical and relaxation properties of the materials studied are consistent with a rheological model of a standard linear solid where the relaxation time (or viscosity) depends exponentially on the temperature in accordance with the Arrhenius equation for the rate of thermally activated process. Empirical estimates for the nonrelaxed and relaxed Young’s moduli and also for the activation energy (U = 0.75 eV) and the period of attempts (τ0 = 10⁻¹² s) of the molecular process which determines the relaxation properties and the glass transition of the materials have been obtained. The addition of carbon nanotubes into elastomeric epoxy resin had no effect on its micromechanical characteristics as measured by the microhardness tester. It is shown that the conventional microindentation method is an efficient tool of investigating the thermomechanical properties of elastomers nearby and below the glass transition temperature. За допомогою мікротвердоміра з низькотемпературним пристроєм вивчено механічні властивості епоксидної смоли та нанокомпозитів епоксидна смола–вуглецеві нанотрубки. Аналіз дифракції рентгенівських променів показав, що всі зразки не містять кристалічних складових та є аморфними з доменами близького порядку. Оцінено мікротвердість всіх зразків в інтервалі температур 230–300 К. Вимірювання показали, що при кімнатній температурі ці матеріали мають властивості еластомерів (тобто знаходяться у високоеластичному стані), а в інтервалі температур 250–270 К має місце перехід у стан скла. Аналіз температурної залежності мікротвердості показав, що термомеханічні та релаксаційні властивості вивчених матеріалів узгоджуються з реологічною моделлю стандартного лінійного твердого тіла, для якого час релаксації (або в'язкість) експоненціально залежить від температури згідно з рівнянням Арреніуса для швидкості термоактивованого процесу. Одержано емпіричні оцінки нерелаксованого і релаксованого модулів Юнга, а також енергії активації (U = 0,75 еВ) і періоду спроб (τ0 = 10⁻¹² с) молекулярного процесу, який визначає релаксаційні властивості та перехід матеріалів у стан скла. Додавання вуглецевих нанотрубок в епоксидну смолу не вплинуло на мікромеханічні характеристики. Показано, що традиційний метод мікроіндентування — це ефективний спосіб вивчення термомеханічних властивостей еластомерів поблизу та нижче температури переходу у стан скла. С помощью микротвердомера с низкотемпературной приставкой изучены механические свойства эпоксидной смолы и нанокомпозитов эпоксидная смола–углеродные нанотрубки. Анализ дифракции рентгеновских лучей показал, что все образцы не содержали кристаллических составляющих и являлись аморфными с доменами ближнего порядка. Оценена микротвердость всех образцов в интервале температур 230–300 К. Измерения показали, что при комнатной температуре эти материалы являются эластомерами (т.е. находятся в высокоэластическом состоянии), а в интервале температур 250–270 К имеет место переход в состояние стекла. Анализ температурной зависимости микротвердости показал, что термомеханические и релаксационные свойства изученных материалов согласуются с реологической моделью стандартного линейного твердого тела, для которого время релаксации (или вязкость) экспоненциально зависит от температуры в соответствии с уравнением Аррениуса для скорости термоактивированного процесса. Получены эмпирические оценки нерелаксированного и релаксированного модулей Юнга, а также энергии активации (U = 0,75 эВ) и периода попыток (τ0 = 10⁻¹² с) молекулярного процесса, определяющего релаксационные свойства и переход материалов в состояние стекла. Добавление углеродных нанотрубок в эпоксидную смолу не повлияло на микромеханические характеристики. Показано, что традиционный метод микроиндентирования является эффективным способом для изучения термомеханических свойств эластомеров вблизи и ниже температуры перехода в состояние стекла. Ключевые слова: аморфные эластомеры и их углеродные нанокомпозиты, микроиндентирование, низкотемпературная микротвердость, релаксационные свойства, стеклование.