Hamiltonian formulation for the motion of a two fluid system with free surface

In this work a theoretical investigation is performed on modeling interfacial and surface waves in a layered fluid system. The physical system consists of two immiscible liquid layers of different densities ρ1 > ρ2 with an interfacial and a free surface, inside a prismatic-section tank. By usin...

Full description

Saved in:
Bibliographic Details
Published in:Нелінійні коливання
Date:2003
Main Authors: Sciortino, G., M.La Rocca, Boniforti, M.
Format: Article
Language:English
Published: Інститут математики НАН України 2003
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/176157
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Hamiltonian formulation for the motion of a two fluid system with free surface / G. Sciortino, M.La Rocca, M. Boniforti // Нелінійні коливання. — 2003. — Т. 6, № 1. — С. 109-116. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:In this work a theoretical investigation is performed on modeling interfacial and surface waves in a layered fluid system. The physical system consists of two immiscible liquid layers of different densities ρ1 > ρ2 with an interfacial and a free surface, inside a prismatic-section tank. By using the potential formulation of the fluid motion, a nonlinear system of partial differential equations is derived applying an Hamiltonian formulation for irrotational flow of the two fluids of different density subject to conservative force. As a consequence of the assumption of potential velocity, the dynamics of the system can be described in terms of variables evaluated only at the boundary of the fluid system, namely the separation surface and the free surface. This Hamiltonian formulation permits to define the evolution equations of the system in a canonical form by using the functional derivatives. Виконано теоретичне моделювання внутрiшнiх та поверхневих хвиль у шаровiй системi рiдин. Фiзична система складається з двох рiдин, що не змiшуються, рiзних щiльностей ρ1 > ρ2 з внутрiшньою та вiльною поверхнями в призматичному бацi. На основi потенцiалу руху рiдини за допомогою гамiльтонового пiдходу до безвихрової течiї двох рiдин рiзної щiльностi пiд дiєю консервативної сили отримано нелiнiйну систему диференцiальних рiвнянь з частинними похiдними. Як наслiдок припущення про наявнiсть потенцiалу швидкостi динамiка системи описується за допомогою змiнних, заданих лише на межi системи рiдин, тобто на поверхнi розподiлу та вiльної поверхнi. Такий пiдхiд дав можливiсть визначити еволюцiйнi рiвняння системи в канонiчнiй формi за допомогою функцiональних похiдних.
ISSN:1562-3076