Obtaining and analysis of товассо, lettuce and rape plants transformed with human interferon alfa 2b gene

Plasmid constructs for Agrobacterium-mediated transformation of plant nuclear genome with human interferon alpha2b gene were built up and used to obtain transgenic plants of tobacco, lettuce and rape. Presence of the target gene was confirmed by PCR analysis and interferon activity in lettuce pla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2009
Hauptverfasser: Gerasymenko, I.M., Lypova, N.M., Sakhno, L.A., Shcherbak, N.L., Sindarovska, Y.R., Bannikova, M.A., Sheludko, Y.V., Kuchuk, N.V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут молекулярної біології і генетики НАН України 2009
Schriftenreihe:Фактори експериментальної еволюції організмів
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/176897
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Obtaining and analysis of товассо, lettuce and rape plants transformed with human interferon alfa 2b gene / I.M. Gerasymenko, N.M. Lypova, L.A. Sakhno, N.L. Shcherbak, Y.R. Sindarovska, M.A. Bannikova, Y.V. Sheludko, N.V. Kuchuk // Фактори експериментальної еволюції організмів: Зб. наук. пр. — 2009. — Т. 7. — С. 217-221. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-176897
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1768972025-02-23T17:26:43Z Obtaining and analysis of товассо, lettuce and rape plants transformed with human interferon alfa 2b gene Gerasymenko, I.M. Lypova, N.M. Sakhno, L.A. Shcherbak, N.L. Sindarovska, Y.R. Bannikova, M.A. Sheludko, Y.V. Kuchuk, N.V. Біотехнології у медицині та сільському господарстві Plasmid constructs for Agrobacterium-mediated transformation of plant nuclear genome with human interferon alpha2b gene were built up and used to obtain transgenic plants of tobacco, lettuce and rape. Presence of the target gene was confirmed by PCR analysis and interferon activity in lettuce plants was shown by the vesicular stomatitis virus cytopathic effect assay. Сконструйовані вектори для Agrobacterium-опосередкованої трансформації ядерного геному рослин геном інтерферону альфа 2b людини були використані для отримання трансгенних рослин тютюну, салату та ріпаку. Присутність цільового гену було показано за допомогою ПЛР аналізу. Трансформовані рослини салату демонстрували антивірусну активність інтерферону. Сконструированные вектора для Agrobacterium-опосредованной трансформации ядерного генома растений геном интерферона альфа 2b человека были использованы для получения трансгенных растений табака, салата и рапса. Присутствие целевого гена было показано с помощью ПЦР анализа. Трансформированные растения салата демонстрировали антивирусную активность интерферона. 2009 Article Obtaining and analysis of товассо, lettuce and rape plants transformed with human interferon alfa 2b gene / I.M. Gerasymenko, N.M. Lypova, L.A. Sakhno, N.L. Shcherbak, Y.R. Sindarovska, M.A. Bannikova, Y.V. Sheludko, N.V. Kuchuk // Фактори експериментальної еволюції організмів: Зб. наук. пр. — 2009. — Т. 7. — С. 217-221. — Бібліогр.: 17 назв. — англ. 2219-3782 https://nasplib.isofts.kiev.ua/handle/123456789/176897 en Фактори експериментальної еволюції організмів application/pdf Інститут молекулярної біології і генетики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Біотехнології у медицині та сільському господарстві
Біотехнології у медицині та сільському господарстві
spellingShingle Біотехнології у медицині та сільському господарстві
Біотехнології у медицині та сільському господарстві
Gerasymenko, I.M.
Lypova, N.M.
Sakhno, L.A.
Shcherbak, N.L.
Sindarovska, Y.R.
Bannikova, M.A.
Sheludko, Y.V.
Kuchuk, N.V.
Obtaining and analysis of товассо, lettuce and rape plants transformed with human interferon alfa 2b gene
Фактори експериментальної еволюції організмів
description Plasmid constructs for Agrobacterium-mediated transformation of plant nuclear genome with human interferon alpha2b gene were built up and used to obtain transgenic plants of tobacco, lettuce and rape. Presence of the target gene was confirmed by PCR analysis and interferon activity in lettuce plants was shown by the vesicular stomatitis virus cytopathic effect assay.
format Article
author Gerasymenko, I.M.
Lypova, N.M.
Sakhno, L.A.
Shcherbak, N.L.
Sindarovska, Y.R.
Bannikova, M.A.
Sheludko, Y.V.
Kuchuk, N.V.
author_facet Gerasymenko, I.M.
Lypova, N.M.
Sakhno, L.A.
Shcherbak, N.L.
Sindarovska, Y.R.
Bannikova, M.A.
Sheludko, Y.V.
Kuchuk, N.V.
author_sort Gerasymenko, I.M.
title Obtaining and analysis of товассо, lettuce and rape plants transformed with human interferon alfa 2b gene
title_short Obtaining and analysis of товассо, lettuce and rape plants transformed with human interferon alfa 2b gene
title_full Obtaining and analysis of товассо, lettuce and rape plants transformed with human interferon alfa 2b gene
title_fullStr Obtaining and analysis of товассо, lettuce and rape plants transformed with human interferon alfa 2b gene
title_full_unstemmed Obtaining and analysis of товассо, lettuce and rape plants transformed with human interferon alfa 2b gene
title_sort obtaining and analysis of товассо, lettuce and rape plants transformed with human interferon alfa 2b gene
publisher Інститут молекулярної біології і генетики НАН України
publishDate 2009
topic_facet Біотехнології у медицині та сільському господарстві
url https://nasplib.isofts.kiev.ua/handle/123456789/176897
citation_txt Obtaining and analysis of товассо, lettuce and rape plants transformed with human interferon alfa 2b gene / I.M. Gerasymenko, N.M. Lypova, L.A. Sakhno, N.L. Shcherbak, Y.R. Sindarovska, M.A. Bannikova, Y.V. Sheludko, N.V. Kuchuk // Фактори експериментальної еволюції організмів: Зб. наук. пр. — 2009. — Т. 7. — С. 217-221. — Бібліогр.: 17 назв. — англ.
series Фактори експериментальної еволюції організмів
work_keys_str_mv AT gerasymenkoim obtainingandanalysisoftovassolettuceandrapeplantstransformedwithhumaninterferonalfa2bgene
AT lypovanm obtainingandanalysisoftovassolettuceandrapeplantstransformedwithhumaninterferonalfa2bgene
AT sakhnola obtainingandanalysisoftovassolettuceandrapeplantstransformedwithhumaninterferonalfa2bgene
AT shcherbaknl obtainingandanalysisoftovassolettuceandrapeplantstransformedwithhumaninterferonalfa2bgene
AT sindarovskayr obtainingandanalysisoftovassolettuceandrapeplantstransformedwithhumaninterferonalfa2bgene
AT bannikovama obtainingandanalysisoftovassolettuceandrapeplantstransformedwithhumaninterferonalfa2bgene
AT sheludkoyv obtainingandanalysisoftovassolettuceandrapeplantstransformedwithhumaninterferonalfa2bgene
AT kuchuknv obtainingandanalysisoftovassolettuceandrapeplantstransformedwithhumaninterferonalfa2bgene
first_indexed 2025-11-24T02:53:28Z
last_indexed 2025-11-24T02:53:28Z
_version_ 1849638580277739520
fulltext 217 Резюме Оптимізовано середовище для максимального нагромадження ФМН рекомбінантними штамами дріжджів Candida famata, що містять ген РФ-кінази FMN1 під контролем сильного конститутивного промотора TEF1. Оптимизирован состав среды для максимального накопления ФМН рекомбинантными штаммами дрожжей Candida famata, содержащими ген РФ-киназы FMN1 под контролем сильного конститутивного промотора TEF1. The medium composition for maximal FMN production by recombinant strains of the yeast Candida famata that express the FMN1 gene encoding riboflavin kinase under control of the strong constitutive TEF1 promoter was optimized. GERASYMENKO I.M., LYPOVA N.M., SAKHNO L.A., SHCHERBAK N.L., SINDAROVSKA Y.R., BANNIKOVA M.A., SHELUDKO Y.V., KUCHUK N.V. Institute of Cell Biology and Genetic Engineering NAS of Ukraine, Zabolotnogo str. 148, Kiev 03680, Ukraine, e-mail: ysheludko@ukr.net OBTAINING AND ANALYSIS OF ТОВАССО, LETTUCE AND RAPE PLANTS TRANSFORMED WITH HUMAN INTERFERON ALFA 2B GENE Interferons are a large family of multifunctional secreted proteins involved in animal antiviral defence, cell growth regulation and immune system activation [1]. The human interferon alpha2b (hIFN-α2b) is used to treat several diseases including some types of cancer and hepatitis C. Recombinant human interferons have been produced in bacteria, yeast, insect and mammalian cells, and several plant species. Plants as source of pharmaceutical proteins have important advantages over microbial or animal cell systems. They are free from bacterial toxins and human pathogens like viruses and prions, so the recombinant proteins of plant origin are considered to be safer [2]. In some cases they can be used without purification as edible vaccines that lowers production costs considerably [3]. The main obstacle on the way of using transgenic plants for high-scale production of recombinant proteins is the low level of foreign gene expression in case of stable integration into plant nuclear genome (usually about 0.1-0.5 % TSP) [3]. However, the high specific activity of hIFN-α2b may allow using of transgenic plants as food supplements to enhance immune functions of humans and animals. Here we describe Agrobacterium-mediated genetic transformation of model and agricultural plant species with hIFN-α2b gene that resulted in obtaining of plants expressing physiologycally active human interferon. Materials and methods Agrobacterium tumefaciens strain GV3101 was used for plant transformation. Escherichia coli strain XL1Blue was used for cloning of binary plasmid vectors. Plasmid vectors pICH5290, pCBV16, pICH13301 and pICH17311 were generously donated by Icon Genetics GmbH (Germany). Restriction endonucleases (REs) and T4 DNA ligase were used with supplied buffers (Fermentas, Lithuania). Bacterial cell transformation, plasmid DNA isolation and electrophoretic analysis were carried out as described in [4]. A short nucleotide sequence containing BamHI and XbaI recognition sites was added to the pICH13301 and pICH17311 constructs digested with PstI RE. Native and recombinant hIFN-α2b genes were excised with NcoI and XbaI REs and ligated into pICH5290 and pCBV16 vectors predigested with the same REs. The obtained vectors were designated as pCB73, pCB123, pCB124 and pCB125 (Table1). 218 Table 1. Constructed plasmid vectors used for plant trasformation Plasmid vector Selective gene Gene of interest pCB073 bar Native hIFN-α2b pCB123 nptII Native hIFN-α2b pCB124 nptII Recombinant hIFN-α2b with calreticulin signal peptide pCB125 bar Recombinant hIFN-α2b with calreticulin signal peptide Nicotiana tabacum cv. Wisconsin was transformed by co-cultivation of leaf explants with Agrobacterium carring pCB073 plasmid. Plants were regenerated on MS medium [5] containing 1 mg/l BAP, 0.1 mg/l NAA and 5 mg/l PPT. Cotyledons and hypocotyls excised from 7-days old seedlings of lettuce (Lactuca sativa) cv. Odeskij kucheriavij were inoculated with Agrobacterium carring pCB125 plasmid and transferred to B5 medium [6] containing 25 g/l sucrose, 3 mg/l kinetin, 0.5 mg/l naphtylacetic acid, and 5 mg/l PPT. PPT-resistant shoots were rooted on the B5 medium complemented with 0.5 mg/l NAA and 5 mg/l PPT. Obtained plants were transferred to soil and treated with herbicide BASTA. Rape plants of different varieties (Kletochnyj, Kalinovskij, Westar, Maria, Brutor, Aira, VNIS-100) were transformed by co-cultivation of leaf explants with Agrobacterium carring pCB073 or pCB125 plasmid. Agrobacterium treated explants were placed onto medium with 2 mg/l 2,4-D, 1mg/l NAA, 0,1 mg/l Kin and 0,1 mg/l BA for callus formation. Plants were regenerated on MS-basal medium supplemented with 2 mg/l BA, 1 mg/l Zea, 1 mg/l NAA, 1 mg/l GA and 1 mg/l ABA containing 10 mg/l PPT [7]. PCR analysis was carried out with primers INTFOR 5'-ctcctgcttgaaggacag-3' and INTREV 5'-ggagtcctccttcatcag-3' amplifying the 264 bp fragment of hIFN-α2b gene. To detect agrobacterial contamination, an additional primer pair (VirD1-1 5’- atgtcgcaaggcagtaagccca-3’ and VirD1-2 5’-ggagtctttcagcatggagcaa-3’) was simultaneously used for amplification of 432 bp fragment of virD1 gene. The reaction mixture contained 1 mkg of total plant DNA; 0.25 mkM of each primer; 0,5 u of Taq DNA polymerase and corresponding buffer (Helicon, Russia); 0.5 mM dNTPs (0.125 мМ each). Amplification was conducted under following conditions: 94°С 5 min → (94°С 30 sec, 60°С 30 sec, 72°С 30 sec) х 30 → 72°С 5 min. Extracts from plant leaves were prepared in double volume of 100 mM Tris/HCl buffer, pH 8.0, containing 5 mM Na2EDTA, 100 mM NaCl, 10 mM β-mercaptoethanol, and 2.5 % PVP. The total protein content was measured by the method of Bradford. The extracts were tested for their ability to protect cells against cytopathic viral replication in the vesicular stomatitis virus cytopathic effect assay. Results and discussion Genetic constructs for Agrobacterium-mediated transformation of plant nuclear genome were built up on the basis of binary plasmid vectors pICH5290 and pCBV16. They included bar or nptII genes, respectively, under control of nopaline synthase promoter and octopine synthase terminator. It allowed selection of transformed plants by their resistance to phosphinothricin (PPT) or kanamycin, respectively. hIFN-α2b gene with native N-terminal cleavable signal peptide and recombinant hIFN-α2b gene fused to Nicotiana plumbaginifolia calreticulin signal peptide were derived from pICH13301 and pICH17311 plasmid, respectively. The signal peptides determine translocation of newly synthesized proteins across the membrane of endoplasmic reticulum that leads to their excretion into apoplast and may increase the production level. It was reported previously, that using of N. plumbaginifolia calreticulin signal peptide allowed to achieve high level of transient expression of hIFN-α2b gene in N. benthamiana [8]. However, we decided to use both native and recombinant hIFN- α2b genes because in different plant species the effectiveness of signal peptides may vary. 219 The obtained vectors contained the genes of interest under control of CaMV 35S promoter and nopaline synthase terminator (Table 1). In our experiments we transformed model plant species (tobacco) as well as lettuce and rape which can be used in raw form in human diet or animal feeding. The hIFN-α2b gene was introduced in plant cells by Agrobacterium carrying pCB125 or pCB73 vectors. After selection for PPT resistance we have obtained 7 tobacco plants, 9 lettuce plants and 54 rape plants. Presence of the hIFN-α2b gene as well as absence of Agrobacterium contamination was confirmed by duplex PCR assay for all obtained tobacco and lettuce plants and for 19 rape plants (12 of variety Kletochnyj, 4 of variety Kalinovskij, 1 of variety Westar, 1 of variety Maria and 1 of variety Brutor). The extracts from four green-house grown lettuce plants harboring the hIFN-α2b gene were tested for their ability to protect cells against cytopathic viral replication. One of the tested transformants, as well as control non-transformed plant showed no activity in the vesicular stomatitis virus cytopathic effect assay. Three other lines demonstrated varying levels of antiviral activity (Table 2). Table 2. Interferon activity in leaf extracts of lettuce plants Lettuce plant Interferon activity, IU/ml of leaf extract Interferon activity, IU/g FW Non-transformed 0 0 Transformant 1 0 0 Transformant 2 12.5 27 Transformant 3 100 226 Transformant 4 200 448 Primary transformants of tobacco and lettuce were self-fertilized and seeds were obtained. Physiologically active human interferons have been produced earlier in several plant species by different methods. Stable nuclear transformation was reported for tobacco (interferon beta, [9]), rice plants (interferon alfa, [10]) and cell suspension cultures (interferon gamma, [11]), and potato (interferon α2b and 8, [12]; interferon α2b, [13]). The maximum interferon activity in potato plants reached 560 IU/g FW [12], which is comparable with our data for lettuce (448 IU/g FW, Table 2). In tobacco, high levels (up to 20 % TSP, or 3 mg/g FW) of hIFN-α2b were achieved by chloroplast transformation [14]. However, obtaining of transplastomic plants is a difficult task. Up to date it is feasible for a restricted number of plant species. Many agricultural plants still resist attempts of chloroplast transformation. Another way to increase recombinant protein production in plants is transient expression of foreign gene [15]. By this method active human interferon beta [16] and chicken interferon alpha [17] were produced in lettuce. The drawback of transient expression is the difficulty of scaling up the process. Stable nuclear transformants are suitable for field cultivation in ton range. No additional purification of recombinant protein is necessary if the plant can be freshly consumed. Presently human interferon alfa produced in transgenic duckweed is in phase II of clinical trials (Biolex, USA). In case of hIFN-α2b, the high specific activity of the recombinant protein (108 IU/mg) may allow using of transgenic plants even with low level of target protein accumulation as food supplements to enhance immune functions of humans and animals. Conclusions We have constructed plasmid vectors for Agrobacterium-mediated transformation of plant nuclear genome with human interferon alpha2b gene. With the obtained genetic constructions we performed Agrobacterium-mediated transformation of model (tobacco) as well as agricultural plant species (lettuce, rape) and proved the transgen presence in the 220 selected transformants. The transformed lettuce plants were proved to produce active interferon with the maximal activity about 500 IU/g FW. References 1. Goodbourn S., Didcock L., Randall R.E. Interferons: cell signalling, immune modulation, antiviral responses and virus countermeasures. // J. Gen. Virology – 2000. – Vol. 81. – P. 2341-2364. 2. Larrick J.W., Thomas D.W. Producing proteins in transgenic plants and animals. // Curr. Opin. Biotechnol. – 2001. – Vol. 12. – P. 411-418. 3. Daniell H., Streatfield S.J., Wycoff K. Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. // Trends in Plant Sci. – 2001. – Vol. 6. – P. 219–226. 4. Sambrook J., Fritsch E.F., Maniatis T. Molecular cloning: A laboratory manual. (2nd ed.) // Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. - 1989. 5. Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. // Physiol. Plant. – 1962. – Vol.15 – P. 473-497. 6. Gamborg O.L., Miller R.A., Ojima K. Nutrient requirements of suspension cultures of soybean root cells// Exp. Cell Res. – 1968. – Vol. 50. – P. 151-158. 7. Sakhno L.A., Gocheva E.A. et al. Stable expression of the promotorless bar gene in transformed rapeseed plants // Cytology and Genetics - 2008. - Vol. 42. - N1. – P. 16- 22. 8. Gils M., Kandzia R., et al. High-yield production of authentic human growth hormone using a plant virus-based expression system. // Plant Biotech. J. - 2005. - Vol.3. - P.613-620. 9. Edelbaum O., Stein D., et al. Expression of active human interferon-beta in transgenic plants.// J Interferon Res. - 1992. - Vol.12. - P. 449-453. 10. Masumura T., Morita S., et al. Production of biologically active human interferon-α in transgenic rice. // Plant Biotechnology - 2006. - Vol.23. - P.91-97. 11. Chen T.L., Lin Y.L., et al. Expression of bioactive human interferon-gamma in transgenic rice cell suspension cultures. // Transgenic Res. - 2004. - Vol.13. - P.499- 510. 12. Ohya K., Matsumura T., et al. Expression of two subtypes of human IFN-alpha in transgenic potato plants.// J Interferon Cytokine Res. - 2001. - Vol.21. - P. 595-602. 13. Sawahel W.A. The production of transgenic potato plants expressing human alpha- interferon using lipofectin-mediated transformation.// Cell Mol Biol Lett. - 2002. - Vol.7. - P.19-29. 14. Arlen P.A., Falconer R., et al. Field production and functional evaluation of chloroplast-derived interferon-alpha2b. // Plant Biotechnol J. - 2007. – Vol. 5. – P. 511-525. 15. Sheludko Y.V. Agrobacterium-mediated transient expression as an approach to production of recombinant proteins in plants. // Recent Patents on Biotechnology. – 2008. – Vol. 2. – P. 198-208. 16. Li J., Chen M., et al. Transient expression of an active human interferon-beta in lettuce. // Scientia Horticulturae - 2007. - Vol.112. - P.258-265. 17. Song L., Zhao D.G., et al. Transient expression of chicken alpha interferon gene in lettuce.// J Zhejiang Univ Sci B - 2008. - Vol.9. - P.351-355. Summary Plasmid constructs for Agrobacterium-mediated transformation of plant nuclear genome with human interferon alpha2b gene were built up and used to obtain transgenic plants of tobacco, lettuce and rape. Presence of the target gene was confirmed by PCR analysis and interferon activity in lettuce plants was shown by the vesicular stomatitis virus cytopathic effect assay. 221 Сконструированные вектора для Agrobacterium-опосредованной трансформации ядерного генома растений геном интерферона альфа 2b человека были использованы для получения трансгенных растений табака, салата и рапса. Присутствие целевого гена было показано с помощью ПЦР анализа. Трансформированные растения салата демонстрировали антивирусную активность интерферона. Сконструйовані вектори для Agrobacterium-опосередкованої трансформації ядерного геному рослин геном інтерферону альфа 2b людини були використані для отримання трансгенних рослин тютюну, салату та ріпаку. Присутність цільового гену було показано за допомогою ПЛР аналізу. Трансформовані рослини салату демонстрували антивірусну активність інтерферону.