Розвиток спектрального методу Штурма - Ліувілля розв'язування крайової задачі для бігармонічного рівняння

Узагальнено спектральний метод Штурма – Лiувiлля для розв’язування бiгармонiчного рiвняння. Дослiджено характеристичне рiвняння для визначення власних значень i побудовано власнi функцiї. Знайдено напружено-деформований стан (НДС) прямокутної пластини, навантаженої на сторонах довiльними зусиллями....

Full description

Saved in:
Bibliographic Details
Published in:Нелінійні коливання
Date:2003
Main Author: Ревенко, В.П.
Format: Article
Language:Ukrainian
Published: Інститут математики НАН України 2003
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/176946
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Розвиток спектрального методу Штурма - Ліувілля розв'язування крайової задачі для бігармонічного рівняння / В.П. Ревенко // Нелінійні коливання. — 2002. — Т. 5, № 4. — С. 368-377. — Бібліогр.: 8 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Узагальнено спектральний метод Штурма – Лiувiлля для розв’язування бiгармонiчного рiвняння. Дослiджено характеристичне рiвняння для визначення власних значень i побудовано власнi функцiї. Знайдено напружено-деформований стан (НДС) прямокутної пластини, навантаженої на сторонах довiльними зусиллями. Отримано подання НДС при довiльному зовнiшньому навантаженнi у виглядi ряду за власними функцiями. Запропоновано метод iнтегральних моментiв для знаходження коефiцiєнтiв ряду. Пiдтверджено принцип Сен-Венана. We give a generalization of the Sturm – Liouville spectral method for solving the biharmonic equation. The characteristic equation for finding eigen values was studied and eigen functions were obtained. We find the strain-stress state (SSS) for a rectangular plate loaded on the sides with arbitrary strains. A representation of the SSS for an arbitrary external load as a series with respect to the eigen functions was obtained. A method of integral moments for finding the series coefficients is proposed. The Saint-Venan method was verified.
ISSN:1562-3076