Нарізно неперервні відображення від багатьох змінних зі значеннями у σ-метризовних просторах

Встановлено теореми про сукупну неперервнiсть нарiзно неперервних вiдображень, що заданi на добутках X1 × · · · × Xn+1 топологiчних просторiв, з яких X2, . . . , Xn задовольняють першу аксiому злiченностi, а Xn+1 або такий самий, або метризовний компакт, i набувають значень у цiлком регулярних про...

Full description

Saved in:
Bibliographic Details
Published in:Нелінійні коливання
Date:1999
Main Author: Маслюченко, В.К.
Format: Article
Language:Ukrainian
Published: Інститут математики НАН України 1999
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/176951
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Нарізно неперервні відображення від багатьох змінних зі значеннями у σ-метризовних просторах / В.К. Маслюченко // Нелінійні коливання. — 1999. — Т. 2, № 3. — С. 337-344. — Бібліогр.: 17 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-176951
record_format dspace
spelling Маслюченко, В.К.
2021-02-09T09:03:34Z
2021-02-09T09:03:34Z
1999
Нарізно неперервні відображення від багатьох змінних зі значеннями у σ-метризовних просторах / В.К. Маслюченко // Нелінійні коливання. — 1999. — Т. 2, № 3. — С. 337-344. — Бібліогр.: 17 назв. — укр.
1562-3076
https://nasplib.isofts.kiev.ua/handle/123456789/176951
517.51, 517.98
Встановлено теореми про сукупну неперервнiсть нарiзно неперервних вiдображень, що заданi на добутках X1 × · · · × Xn+1 топологiчних просторiв, з яких X2, . . . , Xn задовольняють першу аксiому злiченностi, а Xn+1 або такий самий, або метризовний компакт, i набувають значень у цiлком регулярних просторах Z, якi подаються у виглядi об’єднання зростаючої послiдовностi своїх замкнених метризовних пiдпросторiв Zm, причому кожна збiжна в Z послiдовнiсть лежить у деякому дограничному просторi Zm.
It is proved theorems on joint continuity of separately continuous mappings f: X1 ×· · ·×Xn+1 where X1 is topological space, X2, . . . , Xn are first countable, Xn+1 is first countable or metrizable compact and Z is completely regular space which is representable as a union of some increasing sequence of its closed metrizable subspaces Zm and each convergent sequence in Z is contained in some subspace Zm.
uk
Інститут математики НАН України
Нелінійні коливання
Нарізно неперервні відображення від багатьох змінних зі значеннями у σ-метризовних просторах
Отдельно непрерывные отображения от многих переменных со значениями в σ-метризуемых пространствах
Separately continuous mappings of many variables with values in σ-metrizable spaces
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Нарізно неперервні відображення від багатьох змінних зі значеннями у σ-метризовних просторах
spellingShingle Нарізно неперервні відображення від багатьох змінних зі значеннями у σ-метризовних просторах
Маслюченко, В.К.
title_short Нарізно неперервні відображення від багатьох змінних зі значеннями у σ-метризовних просторах
title_full Нарізно неперервні відображення від багатьох змінних зі значеннями у σ-метризовних просторах
title_fullStr Нарізно неперервні відображення від багатьох змінних зі значеннями у σ-метризовних просторах
title_full_unstemmed Нарізно неперервні відображення від багатьох змінних зі значеннями у σ-метризовних просторах
title_sort нарізно неперервні відображення від багатьох змінних зі значеннями у σ-метризовних просторах
author Маслюченко, В.К.
author_facet Маслюченко, В.К.
publishDate 1999
language Ukrainian
container_title Нелінійні коливання
publisher Інститут математики НАН України
format Article
title_alt Отдельно непрерывные отображения от многих переменных со значениями в σ-метризуемых пространствах
Separately continuous mappings of many variables with values in σ-metrizable spaces
description Встановлено теореми про сукупну неперервнiсть нарiзно неперервних вiдображень, що заданi на добутках X1 × · · · × Xn+1 топологiчних просторiв, з яких X2, . . . , Xn задовольняють першу аксiому злiченностi, а Xn+1 або такий самий, або метризовний компакт, i набувають значень у цiлком регулярних просторах Z, якi подаються у виглядi об’єднання зростаючої послiдовностi своїх замкнених метризовних пiдпросторiв Zm, причому кожна збiжна в Z послiдовнiсть лежить у деякому дограничному просторi Zm. It is proved theorems on joint continuity of separately continuous mappings f: X1 ×· · ·×Xn+1 where X1 is topological space, X2, . . . , Xn are first countable, Xn+1 is first countable or metrizable compact and Z is completely regular space which is representable as a union of some increasing sequence of its closed metrizable subspaces Zm and each convergent sequence in Z is contained in some subspace Zm.
issn 1562-3076
url https://nasplib.isofts.kiev.ua/handle/123456789/176951
citation_txt Нарізно неперервні відображення від багатьох змінних зі значеннями у σ-метризовних просторах / В.К. Маслюченко // Нелінійні коливання. — 1999. — Т. 2, № 3. — С. 337-344. — Бібліогр.: 17 назв. — укр.
work_keys_str_mv AT maslûčenkovk naríznoneperervnívídobražennâvídbagatʹohzmínnihzíznačennâmiuσmetrizovnihprostorah
AT maslûčenkovk otdelʹnonepreryvnyeotobraženiâotmnogihperemennyhsoznačeniâmivσmetrizuemyhprostranstvah
AT maslûčenkovk separatelycontinuousmappingsofmanyvariableswithvaluesinσmetrizablespaces
first_indexed 2025-12-07T17:01:44Z
last_indexed 2025-12-07T17:01:44Z
_version_ 1850869708562104320