Определение частот и форм собственных колебаний жидкости в составных резервуарах
Розвинуто варiацiйний метод розв’язання спектральної задачi про вiльнi коливання рiдини в осесиметричному резервуарi складної геометрiї, що поставлена з позицiй методу спряження. Отримано узагальнений функцiонал, для якого умови спряження на сумiжнiй частинi введених пiдобластей є природними граничн...
Saved in:
| Published in: | Нелінійні коливання |
|---|---|
| Date: | 2015 |
| Main Author: | |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут математики НАН України
2015
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/177137 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Определение частот и форм собственных колебаний жидкости в составных резервуарах / Ю.В. Троценко // Нелінійні коливання. — 2015. — Т. 18, № 1. — С. 120-132 — Бібліогр.: 7 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Розвинуто варiацiйний метод розв’язання спектральної задачi про вiльнi коливання рiдини в осесиметричному резервуарi складної геометрiї, що поставлена з позицiй методу спряження. Отримано узагальнений функцiонал, для якого умови спряження на сумiжнiй частинi введених пiдобластей є природними граничними умовами. За допомогою методу Трефтца розв’язання вихiдної задачi зведено до розв’язання алгебраїчної задачi невеликої розмiрностi. Наведено результати розрахункiв, якi демонструють ефективнiсть запропонованого пiдходу.
We develop a variation method for solving a spectral problem for free oscillations of fluid in a complex geometry reservoir having an axis symmetry. The problem is formulated as to use the bridging method. We obtain a generalized functional such that the conjugacy conditions on the bordering parts of the introduced domains make natural boundary-value conditions. We use the Trefts method to reduce the initial problem to a problem of solving an algebraic problem the dimension of which is not too large. The calculations performed show effectiveness of the proposed method.
|
|---|---|
| ISSN: | 1562-3076 |