On the Cauchy problem for two-dimensional systems of linear functional differential equations with monotone operator
We establish new efficient conditions sufficient for the unique solvability of the Cauchy problem for twodimensional systems of linear functional differential equations with monotone operators. Знайдено новi ефективнi умови, що є достатнiми для iснування єдиного розв’язку задачi Кошi для двовимiрни...
Gespeichert in:
| Veröffentlicht in: | Нелінійні коливання |
|---|---|
| Datum: | 2007 |
| Hauptverfasser: | Šremr, J., Hakl, R. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2007
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/177215 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On the Cauchy problem for two-dimensional systems of linear functional differential equations with monotone operator / J. Šremr, R. Hakl // Нелінійні коливання. — 2007. — Т. 10, № 4. — С. 560-573. — Бібліогр.: 19 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
On a periodic type boundary-value problem for first order linear functional differential equations
von: Hakl, R., et al.
Veröffentlicht: (2002) -
Periodic boundary-value problem for third-order linear functional differential equations
von: Hakl, R.
Veröffentlicht: (2008) -
On an antiperiodic type boundary-value problem for first order nonlinear functional differential equations of non-Volterra's type
von: Hakl, R., et al.
Veröffentlicht: (2003) -
Comparison theorems from the theory of monotone dynamical systems for linear systems of functional-differential equations with linearly transformed argument
von: H. P. Peliukh, et al.
Veröffentlicht: (2021) -
On the generalized Cauchy problem for the evolutionary equation with operator of fractional differentiation
von: V. V. Horodetskyi, et al.
Veröffentlicht: (2020)