The application of variational methods to some static contact problems for pliant shells of rotation

We propose a method for finding the finite deformations of hyperelastic domal shells of rotation due to hydrostatic load. The problem is considered under the condition that the deformed surface of the shell enters the domain of perfect contact with coaxial rigid surface. The efficiency of the sugges...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Нелінійні коливання
Дата:1999
Автор: Trotsenko, V. A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 1999
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/177273
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The application of variational methods to some static contact problems for pliant shells of rotation / V.A. Trotsenko // Нелінійні коливання. — 1999. — Т. 2, № 4. — С. 559-573. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-177273
record_format dspace
spelling Trotsenko, V. A.
2021-02-14T08:05:23Z
2021-02-14T08:05:23Z
1999
The application of variational methods to some static contact problems for pliant shells of rotation / V.A. Trotsenko // Нелінійні коливання. — 1999. — Т. 2, № 4. — С. 559-573. — Бібліогр.: 6 назв. — англ.
1562-3076
https://nasplib.isofts.kiev.ua/handle/123456789/177273
539.3
We propose a method for finding the finite deformations of hyperelastic domal shells of rotation due to hydrostatic load. The problem is considered under the condition that the deformed surface of the shell enters the domain of perfect contact with coaxial rigid surface. The efficiency of the suggested approach is assured by taking into account the singular properties of solutions on the line of transition of shell surface from free domain to the contact one and their asymptotic behavior in vicinity of the shell pole. For a set of examples, which illustate the advantages of the algorithm, we present the basic dependences describing stressly-deformed state of a shell.
На основi варiацiйного методу пропонується розв’язок задачi про скiнченнi деформацiї гiперпружних оболонок обертання пiд дiєю гiдростатичного навантаження за умови, що деформована поверхня оболонки вступає в зону iдеального контакту iз спiввiсно розмiщеною жорсткою поверхнею обертання. Ефективнiсть запропонованого пiдходу зумовлена врахуванням властивостей шуканих розв’язкiв на лiнiї переходу поверхнi оболонки вiд вiльної зони до контактної та асимптотичної поведiнки їх в околi полюса оболонки. На конкретних прикладах проiлюстровано можливостi запропонованого алгоритму.
The author is grateful to DFG for partial support.
en
Інститут математики НАН України
Нелінійні коливання
The application of variational methods to some static contact problems for pliant shells of rotation
Застосування варіаційних методів в деяких контактних задачах статики м'яких оболонок обертання
Применение вариационных методов в некоторых контактных задачах статики мягких оболочек вращения
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The application of variational methods to some static contact problems for pliant shells of rotation
spellingShingle The application of variational methods to some static contact problems for pliant shells of rotation
Trotsenko, V. A.
title_short The application of variational methods to some static contact problems for pliant shells of rotation
title_full The application of variational methods to some static contact problems for pliant shells of rotation
title_fullStr The application of variational methods to some static contact problems for pliant shells of rotation
title_full_unstemmed The application of variational methods to some static contact problems for pliant shells of rotation
title_sort application of variational methods to some static contact problems for pliant shells of rotation
author Trotsenko, V. A.
author_facet Trotsenko, V. A.
publishDate 1999
language English
container_title Нелінійні коливання
publisher Інститут математики НАН України
format Article
title_alt Застосування варіаційних методів в деяких контактних задачах статики м'яких оболонок обертання
Применение вариационных методов в некоторых контактных задачах статики мягких оболочек вращения
description We propose a method for finding the finite deformations of hyperelastic domal shells of rotation due to hydrostatic load. The problem is considered under the condition that the deformed surface of the shell enters the domain of perfect contact with coaxial rigid surface. The efficiency of the suggested approach is assured by taking into account the singular properties of solutions on the line of transition of shell surface from free domain to the contact one and their asymptotic behavior in vicinity of the shell pole. For a set of examples, which illustate the advantages of the algorithm, we present the basic dependences describing stressly-deformed state of a shell. На основi варiацiйного методу пропонується розв’язок задачi про скiнченнi деформацiї гiперпружних оболонок обертання пiд дiєю гiдростатичного навантаження за умови, що деформована поверхня оболонки вступає в зону iдеального контакту iз спiввiсно розмiщеною жорсткою поверхнею обертання. Ефективнiсть запропонованого пiдходу зумовлена врахуванням властивостей шуканих розв’язкiв на лiнiї переходу поверхнi оболонки вiд вiльної зони до контактної та асимптотичної поведiнки їх в околi полюса оболонки. На конкретних прикладах проiлюстровано можливостi запропонованого алгоритму.
issn 1562-3076
url https://nasplib.isofts.kiev.ua/handle/123456789/177273
citation_txt The application of variational methods to some static contact problems for pliant shells of rotation / V.A. Trotsenko // Нелінійні коливання. — 1999. — Т. 2, № 4. — С. 559-573. — Бібліогр.: 6 назв. — англ.
work_keys_str_mv AT trotsenkova theapplicationofvariationalmethodstosomestaticcontactproblemsforpliantshellsofrotation
AT trotsenkova zastosuvannâvaríacíinihmetodívvdeâkihkontaktnihzadačahstatikimâkihobolonokobertannâ
AT trotsenkova primenenievariacionnyhmetodovvnekotoryhkontaktnyhzadačahstatikimâgkihoboločekvraŝeniâ
AT trotsenkova applicationofvariationalmethodstosomestaticcontactproblemsforpliantshellsofrotation
first_indexed 2025-11-24T02:53:38Z
last_indexed 2025-11-24T02:53:38Z
_version_ 1850430130589007872
fulltext т. 2 •№ 4 • 1999 UDC 539 . 3 THE APPLICATION OF VARIATIONAL METHODS TO SOME STATIC CONTACT PROBLEMS FOR PLIANT SHELLS OF ROTATION∗ ЗАСТОСУВАННЯ ВАРIАЦIЙНИХ МЕТОДIВ В ДЕЯКИХ КОНТАКТНИХ ЗАДАЧАХ СТАТИКИ М’ЯКИХ ОБОЛОНОК ОБЕРТАННЯ V.A. Trotsenko Inst. Math. Nat. Acad. Sci. Ukraine, Ukraine, 252601, Kyiv 4, Tereshchenkivs’ka str., 3 We propose a method for f inding the f inite deformations of hyperelastic domal shells of rotation due to hydrostatic load. The problem is considered under the condition that the deformed surface of the shell enters the domain of perfect contact with coaxial rigid surface. The ef f iciency of the suggested approach is assured by taking into account the singular properties of solutions on the line of transition of shell surface from free domain to the contact one and their asymptotic behavior in vicinity of the shell pole. For a set of examples, which illustate the advantages of the algorithm, we present the basic dependences describing stressly-deformed state of a shell. На основi варiацiйного методу пропонується розв’язок задачi про скiнченнi деформацiї гiпер- пружних оболонок обертання пiд дiєю гiдростатичного навантаження за умови, що деформо- вана поверхня оболонки вступає в зону iдеального контакту iз спiввiсно розмiщеною жорст- кою поверхнею обертання. Ефективнiсть запропонованого пiдходу зумовлена врахуванням властивостей шуканих розв’язкiв на лiнiї переходу поверхнi оболонки вiд вiльної зони до кон- тактної та асимптотичної поведiнки їх в околi полюса оболонки. На конкретних прикладах проiлюстровано можливостi запропонованого алгоритму. Consider the pliant domal shell of rotation Σ0 in undeformed state rigidly fixed on a parallel of radius R0 on walls of an absolutely rigid surface of rotation S so that the axes of symmetry of Σ0 and S coincide. We suppose that the shell is made of an isotropic incompressible and highly elastic material, and its thickness h0 is constant and sufficiently small with respect to R0. The distance of points of the shell generatrix to the axis of symmetry in the initial state is posed by ξ = ξ(s), where s is the length of a meridian arc measured from the shell pole. In order to describe the shape of deformed membrane, we introduce the cylindrical coordinate system (z, η, r) whose axis Oz coincides with the symmetry axis of the considered mechanical system. We assume that the shell is under hydrostatic pressure Q. Hence, for some values of parameters of load, the deformed shell Σ can contact with the rigid surface S, as shown in * The author is grateful to DFG for partial support. c© V.A. Trotsenko, 1999 559 Fig. 1. We define the contact domain as the part of the surface of the deformed shell Σ which is in contact with the surface S. The remaining part of the shell surface will be referred as free domain. Fig. 1 Let the generatrix of the surface S have positive (negative) curvature and be described by the equation r = ϕ(z). (1) In what follows we assume that, as the load Q increases, the contact domain grows from the side of rigid fixing of the shell on the surface S. By virtue of the assumptions made, the geometrical and physical quantities describing the deformed state of the shell are the functions of the arc length s only and, hence, we may seek for the equations describing the meridian of the deformed shell in the following form: z = z(s), r = r(s). (2) The equilibrium conditions for the infinitesimal element of the free domain of the deformed shell enable us to obtain the governing equations [1] dT1 ds + 1 r dr ds (T1 − T2) = 0, T1 R1 + T2 R2 = Q, Q = C −Dz. (3) The internal strains T1 and T2 of the deformed shell in the meridian and parallel directions are determined from the relations 560 ISSN 1562-3076. Нелiнiйнi коливання, 1999, т. 2, № 4 Ti = 2h0λ3 ( λ2 i − λ2 3 )(∂W ∂I1 + λ2 3−i ∂W ∂I2 ) , i = 1, 2, λ1 = [( dz ds )2 + ( dr ds )2 ]1/2 , λ2 = r(s) ξ(s) , λ3 = 1 λ1λ2 = h(s) h0 , I1 = λ2 1 + λ2 2 + λ2 3, I2 = λ−2 1 + λ−2 2 + λ−2 3 , W = W (I1, I2) . (4) Here λ1, λ2 and λ3 are the main degrees of lengthening in the directions of meridian, parallel and normal to deformed surface, respectively, W is the energy function of deformation for the shell material, I1, I2 are the invariants of deformations, and h(s) is the thickness of the shell in the deformed state. The main radii of the curvature of the deformed shell median surface are given by the formulae R1 = λ3 1 /( d2r ds2 dz ds − dr ds d2z ds2 ) , R2 = −(rλ1) / dz ds . Let us choose the energy function of deformation in Mooney’s form [2] W = C1 (I1 − 3) + C2 (I2 − 3) , (5) where C1, C2 are physical constants, which may be found experimentally. When assuming that no friction between the shell Σ and the surface S occur, we arrive at the equilibrium equations (3) for the contact domain dT1 ds + 1 r dr ds (T1 − T2) = 0, T1 R1 + T2 R2 = Q−QR, (6) where QR is the pressure exerted by the surface S on contacting shell. The account of the relation (2) between the solutions r(s) and z(s) in the contact domain makes the second equation from (6) auxiliary and enables us to calculate the distribution of normal pressure QR between the surface S and the shell Σ, using the solution z(s). Let us introduce the following dimensionless variables {s∗, r∗, z∗} = {s, r, z} R0 , T ∗i = Ti/ (2h0C1) , W ∗ = W C1 , Q∗ = QR0 (2h0C1) . In what follows, we use these dimensionless variables but omit the asterisk for the sake of simplicity. Let us place the origin of coordinate system Ozηr in the plane of the fixed contour and write the boundary values of z(s) and r(s) at the ends of integration interval of equilibrium equations dz ds ∣∣∣∣ s=0 = r(0) = z(s0) = 0. (7) ISSN 1562-3076.Нелiнiйнi коливання, 1999, т. 2, № 4 561 Thus, we have obtained the nonlinear boundary value problem possessing an interesting feature with respect to the case of free deformation of the shell. Namely, the shell contact domain is a priori unknown and should be determined while solving the problem. Let us apply the variational formulation of the considered problem to the construction of the approximate solution. For the free deformation of the domal shells under the hydrostatic load, the solution of relevant nonlinear boundary value problem is equivalent to finding the stationary points of the functional [3] I = s0∫ 0 Φ(s, r, z, r′, z′)ds, (8) Φ = [(I1 − 3) + Γ (I1 − 3)] ξ(s) +Qr2dz ds , Γ = C2 C1 . In the case where the deformed shell contacts with the rigid surface S with generatrix (1), we must impose on the class of admissible functions both the conditions (7) and an additional constraint of geometrical nature, which has the form of an inequality: ψ(z, r) = r(s)− ϕ (z(s)) ≤ 0, where the equality holds for the contact domain of the shell. The solution of this problem was first constructed by methods for solving similar problems in the theory of nonlinear programming [4]. This approach introduces a penalty function so that the constraint in the form of inequality is reduced to that in the form of equality, and the relevant problem of finding the conditional extremum of the functional is solved by well-known methods of calculus of variations. However, this approach turned out to be inefficient because it does not take into account the differential properties of solutions at the contact line. Assume that the transition of shell generatrix from contact domain to free one takes place for s = a. Let us study the properties of solutions r(s) and z(s) in the vicinity of this point. To do this, let us represent the functional (8) in the form I = a∫ 0 Φ(s, z, r, z′, r′)ds+ s0∫ a Φ(s, z, r, z′, r′)r=ϕ(z)ds = I1 + I2. (9) In order to evaluate the variation of the functional I1, we can use the formula for the variation of a functional with two unknown functions, where the left boundary point is fixed, but the right one can move along the line r = ϕ(z). Thus, we obtain [5] δI1 = [ Φ− z′Φz′ − r′Φr′ ] s=a δa+ [( Φz′ + ∂ϕ ∂z Φr′ ) δz ] s=a + + a∫ 0 [( Φz − d ds Φz′ ) δz + ( Φr − d ds Φr′ ) δr ] ds. (10) 562 ISSN 1562-3076. Нелiнiйнi коливання, 1999, т. 2, № 4 In turn, the functional I2 can be represented in the form I2 = s0∫ a Φ ( s, ϕ(z), z′, ∂ϕ ∂z z′ ) ds = s0∫ a F (s, z, z′)ds, and its variation will be evaluated as that of a functional with one function with movable left boundary point. This yields the formula δI2 = −[F − z′Fz′ ]s=aδa− [Fz′δz]s=a + s0∫ 0 ( Fz − d ds Fz′ ) δzds. Taking into account the relations Fz = Φz + ∂ϕ ∂z Φr + d dz ( ∂ϕ ∂z z′ ) Φz′ , Fz′ = Φz′ + ∂ϕ ∂z Φr′ and introducing the notation Φ̃ = Φ(s, z, r, z̃′, r̃′), where z̃′, r̃′ are the values of the derivatives z′ and r′ at the point s = a when tending to it from the right, we can represent the variation of the functional I2 in the form δI2 = − [ Φ̃− z̃′Φ̃z′ − r̃′Φ̃r′ ] s=a δa− [( Φ̃z′ + ∂ϕ ∂z Φ̃r′ ) δz ] s=a + + s0∫ a [ Φz − d ds Φz′ + ∂ϕ ∂z ( Φr − d ds Φr′ )] r=ϕ(z) δzds. (11) Since z(s) and r(s) ensure the extremum of the functional I , we have δI = δI1 + δI2 = 0. If the functions z(s) and r(s) ensure the extremum of the functional (9) for arbitrary δa and δz|s=a, then the same obviously remains true for δa = 0 and δx|s=a = 0. Hence the main lemma of calculus of variations allows us to conclude that the extremum may be achieved only on integral curves of the Euler system of equations Φz − d ds Φz′ = 0, Φr − d ds Φr′ = 0, s ∈ [0, a], (12) [ Φz − d ds Φz′ + ∂ϕ ∂z ( Φr − d ds Φr′ )] r=ϕ(z) = 0, s ∈ [a, s0]. (13) ISSN 1562-3076.Нелiнiйнi коливання, 1999, т. 2, № 4 563 Making simple transformations and keeping the relations (4) in mind, one can show that the Euler equations (12) are nothing but the equilibrium equations (3) for the shell in free domain, while equation (13) turns into the first equilibrium equation for the shell in the contact do- main (6). Collecting non-integral terms in the variations (10) and (11) and taking into account the arbitrariness of the variations δa and δz|s=a yields the equations for shell generatrix at the point of its transition from the domain ψ(z, r) < 0 to the boundary ψ(z, r) = 0: [ Φ− Φ̃− z′Φz′ + z̃′Φ̃z′ + r̃′Φ̃r′ − r′Φr′ ] s=a = 0,[ Φz′ − Φ̃z′ + ∂ϕ ∂z ( Φr′ − Φ̃r′ )] s=a = 0. These equations are satisfied if we set z′(a) = z̃′(a), r′(a) = r̃′(a). As follows from the theory of sufficient conditions of extremum, the case where, at the point of transition from the free domain to the boundary ψ(z, r) = 0, the conditions of continuity of derivatives are fulfilled is the most important and significant one and takes place in most applied problems [6]. Let us show that the conditions obtained are sufficient for the actual determination of the extremal curve, provided that it exists. Let 〈f(s)〉 = lim s→a−0 f(s)− lim s→a+0 f(s), let z = z(s, α1, α2, α3, α4), r = r(s, α1, α2, α3, α4) be the general solution of the Euler equations (12) in the free domain, and let z = z(s, β1, β2) be the general solution of the equation (13) in the contact domain. Thus, for determination of the extremal curve we must find four constants αi, i = 1, 4, and two constants βi, i = 1, 2. The boundary conditions (7) allow us to exclude three arbitrary constants. The conditions 〈z〉 = 〈r〉 = 〈z′〉 = 0 allow us to obtain additional relations for the other three constants. It seems that we lack one constant to ensure the continuity of derivative of the function r(s) at the transition through the point s = a. But since the position of the boundary s = a is unknown, the condition 〈r′〉 = 0 can be considered as a necessary requirement for the determination of the point s = a. This fact will be used below for the construction of the approximate solution of the problem. The question of the behavior of higher derivatives of solutions of this problem while passing through the point s = a is very important, so let us investigate it in detail. The equilibrium equations for the shell in contact and free domains and the conditions of continuity of first derivatives of functions z(s) and r(s) yield the relation〈 dT1 ds 〉 = 0, 〈 1 R1 〉 = ( QR T1 ) s=a . (14) 564 ISSN 1562-3076. Нелiнiйнi коливання, 1999, т. 2, № 4 Furthermore, the continuity of dT1 ds implies the continuity of dλ1 ds . We can obtain relations for the second derivatives of functions z(s) and r(s): d2z ds2 = − λ1 R1 dr ds − r R2 dλ1 ds , d2r ds2 = 1 λ1 ( dr ds dλ1 ds − rλ3 1 R1R2 ) . (15) Then, on the basis of formulae (14) and (15), we obtain〈 d2z ds2 〉 = − ( λ1 dr ds QR T1 ) s=a , 〈 d2r ds2 〉 = − ( rλ2 1QR T1R2 ) s=a . (16) Using the repeated differentiation of equilibrium equations, elasticity conditions and expressions (15) and taking into account the relations (16), we can conclude that, except for some particular cases, the higher order derivatives of the functions z(s) and r(s) have discontinuities of the first kind on the line of transition from free domain to contact one. Thus, we may consider the problem about the contact interaction of nonlinearly deformed pliant shell with rigid surface of rotation as the conjugation problem for the systems of nonlinear differential equations (3) and (6), where the conjugation point s = a is not known beforehand. Let us seek for solutions for functions z(s) and r(s) in the form z(s) =  2∑ k=1 xkuk(s) + m∑ k=3 xkuk(s), 0 ≤ s ≤ a; 2∑ k=1 xkuk(s) + m∑ k=3 xk+2m−2uk(s), a ≤ s ≤ s0, r(s) =  s a ϕ (x(a)) + m∑ k=1 xk+mvk(s), 0 ≤ s ≤ a; ϕ (x(s)) , a ≤ s ≤ s0. (17) In these expressions, the coordinate functions uk(s) for k = 1, 2 are defined for all s ∈ [0, s0] and each of them obeys the restriction uk(s0) = 0. The systems of functions uk(s) for k > 2 have different representations on the intervals [0, a] and [a, s0]. Moreover, they must obey some restrictions at the ends of the intervals. Namely, for s ∈ [0, a], they must satisfy the boundary conditions uk(a) = = duk ds ∣∣∣∣ s=a = 0 , while for s ∈ [a, s0], the conditions uk(a) = duk ds ∣∣∣∣ s=a = uk(s0) = 0 must hold. Similarly, the coordinate functions vk(s), which are defined on the interval 0 ≤ s ≤ a, must satisfy the condition vk(a) = 0. The constants xk, k = 1, 3m− 2, are to be determined later. In order to make the reasonable choice of coordinate functions, we expand the required solutions in Taylor series in a vicinity of the point s = 0 and use the repeated differentiation of equilibrium equations and geometrical relations describing the shell for the determination of the coefficients of the expansion. Consider the undeformed state of the class of domal shells whose generatrices cross the symmetry axis at the right angles and whose main curvatures in the pole are equal. Taking into ISSN 1562-3076.Нелiнiйнi коливання, 1999, т. 2, № 4 565 account the symmetry conditions in a pole of deformed shell, which have the form λ1 = λ2 = λ, T1 = T2 = T, 1 R1 = 1 R2 = 1 R , we can show that the solutions bounded for s→ 0 have the structure z(s) = a1 + a2s 2 + a3s 4 + . . . , r(s) = b1s+ b2s 3 + b3s 5 + . . . . On the other hand, let us choose the systems of coordinate functions with the domain of definition [a, s0] within the whole class of power functions. In view of the reasoning presented above, the systems of functions {uk(s)} and {vk(s)} take the form uk(s) = (s2 − s2 0)(s2 − a2)k−1, k = 1, 2, vk(s) = (s2 − a2)s2k−1, k = 1,m, uk(s) =  (s2 − a2)k−1, 0 ≤ s ≤ a, (s− s0)(s− a)2sk−3, a ≤ s ≤ s0, k = 3,m. The direct check shows that the solutions for functions z(s) and r(s) in the form (17) will trivially satisfy the boundary conditions at the point s = s0 and the conjugation conditions 〈z〉 = 〈 dz ds 〉 = 〈r〉 = 0. The finite gap in the higher orders derivatives of solutions is caused by the second terms in (17). In fact, the suggested form of solution for function x(s) is a specifically chosen superposition of two classes of expansions, which describe continuous and singular parts of the solution in question. We take only two terms in the first sum of expression for z(s), which provides the continuous transition of the solution and its first derivative through the point s = a, since the remaining terms of this sum are linearly expressed via the elements of the second sum. Let us substitute the expressions (17) into functional (9), which as a result, becomes a function of 3m− 2 variables xi, being the components of unknown vector ~x. Suppose that the point s = a of transition of the shell generatrix from the contact domain to free one is known. Then we determine the constants xi from the conditions of stationarity of functional (9). This yields the system of nonlinear algebraic equations ~g (~x) = 0. (18) The components of the (3m− 2)-dimensional vector function ~g have the form 566 ISSN 1562-3076. Нелiнiйнi коливання, 1999, т. 2, № 4 gi+εi = s0∫ 0 [ µ1 dz ds dui ds −Qλ2 dr ds ui ] ξ(s)ds+ +δik1 a∫ 0 [ µ1 dr ds + µ2ξ(s) ] ξ(s)ds+ s0∫ a [ µ1 dr ds r1i + µ2ri ] ξ(s)ds, gi+m = a∫ 0 [ µ1 dr ds dvi ds + µ2vi ] ξ(s)ds, i = 1,m, (19) where µ1 = U(λ1, λ2)/λ1, U(λ1, λ2) = ( λ1 − 1 λ3 1λ 2 2 )( 1 + Γλ2 2 ) , µ2 = U(λ2, λ1)/ξ(s) +Qλ2 dz ds , k1 = u1(a) a ∂ϕ ∂z ∣∣∣∣ z=x1u1(a) , ri = ui(s) ∂ϕ ∂z , r1i = dri ds , δi = { 1 ∀ i = 1, 0 ∀ i = 2,m. The quantities εi in (19) are equal to 2(m− 1), if i > 2 and s > 0, and zero otherwise. We solve the algebraic system (18) by using the Newton iteration procedure ~x(k+1) = ~x(k) −H−1 ( ~x(k) ) ~g ( ~x(k) ) , (20) where H (~x) is the Jacobi matrix of the system of functions g1, g2, . . . , g3m−2 with respect to the variables x1, x2, . . . , x3m−2. The upper symmetric part of the nonzero elements hij of the matrix H is given by hi+εi,j+εj = s0∫ 0 ( α1 dui ds duj ds + α2uiuj ) ξ(s)ds+ +δiδjk2 a∫ 0 ( µ1 dr ds + µ2ξ(s) ) ξ(s)ds+ k1 a∫ 0 [ (γ1 + ξ(s)γ2) ( δi duj ds + δj dui ds ) + +γ3ξ(s) (δiuj + δjui) + δiδjk1 ( β1 + 2ξ(s)β2 + ξ2(s)β3 )] ξ(s)ds+ + s0∫ a [ γ1 ( dui ds r1j + duj ds r1i ) + γ2 ( dui ds rj + duj ds ri ) + γ3 (uirj + ujri) ] ξ(s)ds+ + s0∫ 0 [ µ1 dr ds ( ∂2ϕ ∂z2 d ds (uiuj) + ∂3ϕ ∂z3 dz ds uiuj ) + µ2 ∂2ϕ ∂z2 uiuj ] ξ(s)ds+ ISSN 1562-3076.Нелiнiйнi коливання, 1999, т. 2, № 4 567 + s0∫ a [ β1r1ir1j + β2 d ds (rirj) + β3rirj ] ξ(s)ds, hi+m,j+m = a∫ 0 [ β1 dvi ds dvj ds + β2 d ds (vivj) + β3vivj ] ξ(s)ds, i = 1,m; j = 1,m, (21) hi,j+m = a∫ 0 [ γ1 dui ds dvj ds + γ2vj dui ds + γ3vjui + + δik1 ( β1 dvj ds + β2 d ds (ξ(s)vj) + β3ξ(s)vj )] ξ(s)ds, i, j = 1,m. In (21), we have used the following notation: k2 = u2 1(a) a ∂2ϕ ∂z2 ∣∣∣∣ z=x1u1(a) , α1 = z1(λ1, λ2) λ2 1 ( dz ds )2 + µ1 ( dr ds )2 1 λ2 1 , α2 = −∂Q ∂z λ2 dz ds , β1 = z1(λ1, λ2) λ2 1 ( dr ds )2 + µ1 λ2 1 ( dz ds )2 , β2 = z2(λ1, λ2) ξ(s)λ1 dr ds , β3 = 1 ξ(s) [ z1(λ2, λ1) ξ(s) +Q dz ds ] , γ1 = [ z1(λ1, λ2) λ1 − µ1 λ1 ] dz ds dr ds , γ2 = z2(λ1, λ2) ξ(s)λ1 dz ds +Qλ2, γ3 = λ2 dz ds ∂Q ∂z , z1(λ1, λ2) = ( 1 + 3 λ4 1λ 2 2 )( 1 + Γλ2 2 ) , z2(λ1, λ2) = 2 λ3 1λ 3 2 ( 1 + Γλ4 1λ 4 2 ) . To determine the point s = a, we use the continuity condition for the first derivative of the function r(s) at this point. This yields one more nonlinear algebraic equation for the parameter a: ϕ(z) 2a ∣∣∣∣ s=a − a [ x1 + (a2 − 1)x2 ] ∂ϕ ∂z ∣∣∣∣ z=a + m∑ k=1 xk+ma 2k = 0. (22) We seek a solution of the algebraic system (18) and the equation (22) by the method of successive approximations. For the chosen zero approximation ~x(0), we solve equation (22) with respect to the parameter a by the chord method. Then we precise the vector ~x(0) by iterations (20) and then return to solving equation (22). We repeat this process as many times as necessary to provide the required accuracy of the solutions of the equations (18) and (22). Let us consider a shell which has, in the undeformed state, the shape of a circular membrane as the first example of calculation of chracteristics of pliant shells under contact and static loading. As a rigid surface of rotation S, we take the conic surface of angle 90◦. We assume that while entering the contact interaction with the considered surface the membrane is under 568 ISSN 1562-3076. Нелiнiйнi коливання, 1999, т. 2, № 4 constant pressure (D = 0). In all the numerical results given below the parameter Γ describing the ratio of constants in the elastic potential (5) is supposed to be equal to 0,1. The results of numerical computation of values of the functions under study and their first two derivatives at the point s = 0,3 (free domain) in the function of the number m of iterations in expansions (17) for C = 1, 6 are given in Table 1 below. Table 1 m z −z′ z′′ r r′ −r′′ 1 0,44501 0,29341 0,9780 0,34300 1,1062 0,37144 2 0,52587 0,45520 1,3743 0,35753 1,1278 0,62024 3 0,53301 0,43626 1,4503 0,35964 1,1391 0,60854 4 0,53251 0,43967 1,4384 0,35944 1,1377 0,61108 5 0,53251 0,43966 1,4383 0,35944 1,1377 0,61100 6 0,53251 0,43966 1,4383 0,35944 1,1377 0,61099 The similar convergence takes place for the solution z(s) which was evaluated in the domain of contact of deformed shell with cone. The relative error ε = ∣∣∣∣ T1 R1 + T2 R2 −Q ∣∣∣∣ / |Q| , (23) to within which the constructed approximate solutions satisfy the second equilibrium equation for all values of the parameter s, 0 ≤ s ≤ 1, when one keeps six terms in expansions (17), does not exceed 10−4. Figure 2 displays the behavior of solutions z(s) and r(s) and their first derivatives on the whole interval of integration of initial equations (D = 0, C = 1, 6). While the functions z(s) and r(s) are smooth, their first derivatives possess an obvious fracture at the point s = a. The presented results show that the suggested variant of the Ritz method for solution of the problem of contact interaction of pliant shells of rotation with axially symmetric rigid surfaces allows us to obtain the uniform convergence of solutions and their first derivatives within their domain of definition. The main reason for this is taking into account the asymptotics of solutions for s → 0, as well as their differential properties on the line of transition of the shell from contact domain to free one. It should also be mentioned that one may use the representations of solutions of conjugation problem for systems of nonlinear differential equations with unknown point of conjugation, which are different from (17). But the advantage of the algorithm is that, while the realization of iterative procedure, described above, we usually have no problems with choosing initial approximations which ensure its convergence. The profiles of the deformed membrane for different values of the loading parameter C with taking into account the contact interaction with the conic surface in absence of restrictions for displacements (dashed curve) are shown at Fig. 3. The vertical dashed lines indicate the points of transition of the generatrix of deformed shell from the contact domain to free one. ISSN 1562-3076.Нелiнiйнi коливання, 1999, т. 2, № 4 569 Fig. 2 Fig. 3 The main relative lengthening and stresses for the median surface of deformed shell in function of the parameter s (Γ = 0,1, D = 0, C = 1,6) are presented at Fig. 4. The dashed lines refer to the case of free deformation of membrane. As one may observe, the presence of restricting surface S implies the considerable decrease in efforts and deformations of the median surface of the shell with respect to the case where the contact is absent. Let us consider the example where the membrane is rigidly fixed in unstressed state on the walls of circular cylinder orthogonally to its symmetry axis. To solve this contact problem, we apply the above approach with the only difference that we take into account higher smoothness of solutions. For example, it can be easily seen from relations (16) that the second derivative of the function z(s) at the point s = a is continuous. At the same time the derivatives of higher orders of z(s) remain discontinuous. In this connection, let us represent the solutions for functions z(s) and r(s) in the form z(s) =  3∑ n=1 xnun(s) + m∑ n=4 xnun(s), 0 ≤ s ≤ a; 3∑ n=1 xnun(s) + m∑ n=4 xn+2m−3un(s), a ≤ s ≤ 1, r(s) =  s a + m∑ n=1 xn+mvn(s), 0 ≤ s ≤ a; 1, a ≤ s ≤ 1, (24) where un(s) = ( s2 − 1 ) ( s2 − a2 )n−1 , n = 1, 2, 3, un(s) =  ( s2 − a2 )3 s2n−8, 0 ≤ s ≤ a;( s2 − 1 ) ( s2 − a2 )n−1 , a ≤ s ≤ 1, n = 4,m, vn(s) = ( s2 − a2 ) s2n−1, n = 1,m. 570 ISSN 1562-3076. Нелiнiйнi коливання, 1999, т. 2, № 4 Fig. 4 Fig. 5 Expressions (24) take into account a priori the asymptotic behavior of solutions in vicinity of the pole of deformed membrane and satisfy the conjugation conditions 〈z〉 = 〈 dz ds 〉 = 〈 d2z ds2 〉 = 〈r〉 = 0 which imply the existence of discontinuities of the first kind in the derivatives of higher order. The components of the (3m− 3)-dimensional vector function ~g in the case considered have the form gi+εi = 1∫ 0 [ µ1 dz ds dui ds −Qλ2 dr ds ui ] sds, gi+m = a∫ 0 [ µ1 dr ds dvi ds + µ2vi ] sds, i = 1,m. (25) Here, the quantities εi are equal to 2m − 3 if s > a and i > 3, and to zero if at least one of these conditions is not fulfilled. The condition of continuity of the first derivative of the function r(s) at the point s = a yields one more nonlinear equation for the parameter a 1 + 2 m∑ n=1 xn+ma 2n+1 = 0. (26) Since the function z(s) has a discontinuity of the first kind in its third derivative, we can construct a simpler algorithm for solving the problems, in which the computation of the second derivatives of the functions z(s) and r(s) at the points of integration of initial equations is not required. Namely, we can seek the solutions for functions z(s) in the class of continuous functions. In this case, we can seek a solution in the form ISSN 1562-3076.Нелiнiйнi коливання, 1999, т. 2, № 4 571 Fig. 6 Fig. 7 z(s) = p∑ n=1 xnun(s), s ∈ [0, 1], r(s) =  s a + p∑ n=1 xn+pvn(s), s ∈ [0, a], 1, s ∈ [a, 1], (27) where un(s) = ( s2 − 1 ) s2n−2, vn(s) = ( s2 − a2 ) s2n−1. We must also assume that εi = 0 in expressions (25) and thus reduce the problem to the simultaneous solution of 2m nonlinear equations (18) and equation (26). As in the previous example, the parameter Γ in the energy function is taken to be equal to 0,11. The numerical computation of the values of required functions and their derivatives and the quantity ε (23) at the point s = 0,6 in the function of the number m of approximations in expansions (24) are listed in Table 2. The parameters of hydrostatic loading are C = −3,5, D = = 1. We have chosen values of m such that the expansions (24) take into account the discontinuity of the function z(s). Table 2 m −z z′ r r′ ε 4 0,62642 1,5852 0,94180 0,70409 3 · 10−3 5 0,62617 1,5869 0,94186 0,70312 2 · 10−4 6 0,62617 1,5869 0,94186 0,70313 3 · 10−5 572 ISSN 1562-3076. Нелiнiйнi коливання, 1999, т. 2, № 4 Figure 5 shows the behavior of the second derivative of the function z(s) calculated from the fifth (sixth) approximation, when the solutions were represented in the form (24) (solid line) and in the form (27) (dashed line). The results obtained demonstrate the uniform convergence of solutions and their first two derivatives, when one takes into account the presence of discontinuities in the solutions. The profiles of deformed shell for different values of the loading parameter C with account of contact interaction with cylindrical surface of unit radius are shown at Fig. 6. Dashed lines refer to the case of absence of restrictions on displacements. Figure 7 demonstrates the dependences of main relative lengthenings and efforts in the shell in the function of the parameter s (C = −3, 5, D = 1). T1 in the contact domain is constant, which is in agreement which the first equilibrium equation. 1. Green A., Adkins J. Large elastic deformations and nonlinear mechanics of continuum media. — Moscow: Mir, 1965. — 465 p. (in Russian: Translation from English). 2. Oden J. Finite elements of nonlinear continua. — Moscow: Mir, 1976. — 464 p. (in Russian). 3. Trotsenko V.A. Axially symmetric problem on equilibrium of a circular membrane under the hydrostatic load // Phys. and Techn. Appl. of Boundary Problems. — Kiev: Naukova dumka, 1978. — P. 126 — 140 (in Russian). 4. Himmelblau D. Applied nonlinear programming. — Moscow: Mir, 1975. — 536 p. (in Russian). 5. Gel’fand I.M., Fomin S.V. Calculus of variations. — Moscow: Fizmatgiz, 1961. — 228 p. (in Russian). 6. Lavrent’ev M. and Lyusternik L. Foundations of calculus of variations. — Moscow: ONTI, 1935. — Vol. 1, Pt 2. — 400 p. (in Russian). Received 09.03.99 ISSN 1562-3076.Нелiнiйнi коливання, 1999, т. 2, № 4 573