Existence and attractivity results for Hilfer fractional differential equations

We present some results of the existence of attracting solutions of some fractional differential equations of Hilfer type. The results of the existence of solutions are applied to the Schauder fixed point theorem. We prove that all solutions are uniformly locally attracting.

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Abbas, S., Benchohra, M., Henderson, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Назва видання:Нелінійні коливання
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/177329
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Existence and attractivity results for Hilfer fractional differential equations / S. Abbas, M. Benchohra, J. Henderson // Нелінійні коливання. — 2018. — Т. 21, № 3. — С. 295-304 — Бібліогр.: 32 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-177329
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1773292025-02-23T18:34:21Z Existence and attractivity results for Hilfer fractional differential equations Існування притягувальних розв’язків дробових диференціальних рівнянь Хілфера Существование притягивающих решений дробных дифференциальных уравнений Хилфера Abbas, S. Benchohra, M. Henderson, J. We present some results of the existence of attracting solutions of some fractional differential equations of Hilfer type. The results of the existence of solutions are applied to the Schauder fixed point theorem. We prove that all solutions are uniformly locally attracting. Наведено результати iснування притягувальних розв’язкiв деяких дробових диференцiальних рiвнянь хiлферовського типу. Результати iснування розв’язкiв застосовано для теореми Шаудера про нерухому точку. Доведено, що всi розв’язки однорiдно локально притягувальнi. 2018 Article Existence and attractivity results for Hilfer fractional differential equations / S. Abbas, M. Benchohra, J. Henderson // Нелінійні коливання. — 2018. — Т. 21, № 3. — С. 295-304 — Бібліогр.: 32 назв. — англ. 1562-3076 https://nasplib.isofts.kiev.ua/handle/123456789/177329 517.9 en Нелінійні коливання application/pdf Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We present some results of the existence of attracting solutions of some fractional differential equations of Hilfer type. The results of the existence of solutions are applied to the Schauder fixed point theorem. We prove that all solutions are uniformly locally attracting.
format Article
author Abbas, S.
Benchohra, M.
Henderson, J.
spellingShingle Abbas, S.
Benchohra, M.
Henderson, J.
Existence and attractivity results for Hilfer fractional differential equations
Нелінійні коливання
author_facet Abbas, S.
Benchohra, M.
Henderson, J.
author_sort Abbas, S.
title Existence and attractivity results for Hilfer fractional differential equations
title_short Existence and attractivity results for Hilfer fractional differential equations
title_full Existence and attractivity results for Hilfer fractional differential equations
title_fullStr Existence and attractivity results for Hilfer fractional differential equations
title_full_unstemmed Existence and attractivity results for Hilfer fractional differential equations
title_sort existence and attractivity results for hilfer fractional differential equations
publisher Інститут математики НАН України
publishDate 2018
url https://nasplib.isofts.kiev.ua/handle/123456789/177329
citation_txt Existence and attractivity results for Hilfer fractional differential equations / S. Abbas, M. Benchohra, J. Henderson // Нелінійні коливання. — 2018. — Т. 21, № 3. — С. 295-304 — Бібліогр.: 32 назв. — англ.
series Нелінійні коливання
work_keys_str_mv AT abbass existenceandattractivityresultsforhilferfractionaldifferentialequations
AT benchohram existenceandattractivityresultsforhilferfractionaldifferentialequations
AT hendersonj existenceandattractivityresultsforhilferfractionaldifferentialequations
AT abbass ísnuvannâpritâguvalʹnihrozvâzkívdrobovihdiferencíalʹnihrívnânʹhílfera
AT benchohram ísnuvannâpritâguvalʹnihrozvâzkívdrobovihdiferencíalʹnihrívnânʹhílfera
AT hendersonj ísnuvannâpritâguvalʹnihrozvâzkívdrobovihdiferencíalʹnihrívnânʹhílfera
AT abbass suŝestvovaniepritâgivaûŝihrešenijdrobnyhdifferencialʹnyhuravnenijhilfera
AT benchohram suŝestvovaniepritâgivaûŝihrešenijdrobnyhdifferencialʹnyhuravnenijhilfera
AT hendersonj suŝestvovaniepritâgivaûŝihrešenijdrobnyhdifferencialʹnyhuravnenijhilfera
first_indexed 2025-11-24T11:26:40Z
last_indexed 2025-11-24T11:26:40Z
_version_ 1849670868105428992
fulltext UDC 517.9 EXISTENCE AND ATTRACTIVITY RESULTS FOR HILFER FRACTIONAL DIFFERENTIAL EQUATIONS IСНУВАННЯ ПРИТЯГУВАЛЬНИХ РОЗВ’ЯЗКIВ ДРОБОВИХ ДИФЕРЕНЦIАЛЬНИХ РIВНЯНЬ ХIЛФЕРА S. Abbas Tahar Moulay Univ. Saı̈da P.O. Box 138, EN-Nasr, Saı̈da, 20000, Algeria e-mail: said.abbas@univ-saida.dz, abbasmsaid@yahoo.fr M. Benchohra Djillali Liabes Univ. Sidi Bel-Abbès P.O. Box 89, Sidi Bel-Abbès, 22000, Algeria e-mail: benchohra@univ-sba.dz J. Henderson Baylor Univ. Waco, Texas, 76798-7328, USA e-mail: JohnnyHenderson@baylor.edu We present some results of the existence of attracting solutions of some fractional differential equations of Hilfer type. The results of the existence of solutions are applied to the Schauder fixed point theorem. We prove that all solutions are uniformly locally attracting. Наведено результати iснування притягувальних розв’язкiв деяких дробових диференцiальних рiв- нянь хiлферовського типу. Результати iснування розв’язкiв застосовано для теореми Шаудера про нерухому точку. Доведено, що всi розв’язки однорiдно локально притягувальнi. 1. Introduction. Fractional differential equations have recently been applied in various areas of engineering, mathematics, physics and bio-engineering, and other applied sciences [1, 2]. For some fundamental results in the theory of fractional calculus and fractional differential equations we refer the reader to the monographs of Abbas et al. [3 – 5], Samko et al. [6], Kilbas et al. [7] and Zhou [8, 9], the papers by Abbas et al. [10 – 13], Benchohra et al. [14 – 16], Lakshmikantham et al. [17 – 19], and the references therein. Recently, considerable attention has been given to the existence of solutions of initial and boundary value problems for fractional differential equations with Hilfer fractional derivative; see [1, 20 – 25]. In [4, 10 – 13, 26 – 30], Abbas et al. presented some results on the local and global attractivity of solutions for some classes of fractional differential equations involving both the Riemann –Liouville and the Caputo fractional derivatives by employing some fixed point theorems. Motivated by the above papers, in this article we discuss the existence and the attractivity of solutions for the following problem of Hilfer fractional differential equations of the form © S. Abbas, M. Benchohra, J. Henderson, 2018 ISSN 1562-3076. Нелiнiйнi коливання, 2018, т. 21, № 3 295 296 S. ABBAS, M. BENCHOHRA, J. HENDERSON ( Dα,β 0 u ) (t) = f(t, u(t)), t ∈ R+ := [0,+∞),( I1−γ0 u ) (t) ∣∣∣ t=0 = φ, (1) where α ∈ (0, 1), β ∈ [0, 1], γ = α+ β − αβ, φ ∈ R, f : R+ ×R→ R is a given function, I1−γ0 is the left-sided mixed Riemann –Liouville integral of order 1− γ, and Dα,β 0 is the generalized Riemann –Liouville derivative operator of order α and type β, introduced by Hilfer in [1]. This paper initiates the concept of local attractivity of solutions of problem (1). 2. Preliminaries. Let C be the Banach space of all continuous functions v from I := [0, T ], T > 0, into R with the supremum (uniform) norm ‖v‖∞ := sup t∈I |v(t)|. As usual, AC(I) denotes the space of absolutely continuous functions from I into R. We denote by AC1(I) the space defined by AC1(I) := { w : I → R : d dt w(t) ∈ AC(I) } . By L1(I), we denote the space of Lebesgue-integrable functions v : I → R with the norm ‖v‖1 = T∫ 0 |v(t)|dt. By Cγ(I) and C1 γ(I), we denote the weighted spaces of continuous functions defined by Cγ(I) = { w : (0, T ]→ R : t1−γw(t) ∈ C } , with the norm ‖w‖Cγ := sup t∈I ∣∣t1−γw(t) ∣∣ , and C1 γ(I) = { w ∈ C : dw dt ∈ Cγ } , with the norm ‖w‖C1 γ := ‖w‖∞ + ‖w′‖Cγ . Let BC := BC(R+) be the Banach space of all bounded and continuous functions from R+ into R. By BCγ := BCγ(R+) we denote the weighted space of all bounded and continuous functions defined by BCγ = { w : (0,+∞)→ R : t1−γw(t) ∈ BC } , with the norm ‖w‖BCγ := sup t∈R+ ∣∣t1−γw(t) ∣∣ . In the following we denote ‖w‖BCγ by ‖w‖BC . Now, we give some results and properties of fractional calculus. ISSN 1562-3076. Нелiнiйнi коливання, 2018, т. 21, № 3 EXISTENCE AND ATTRACTIVITY RESULTS FOR HILFER FRACTIONAL DIFFERENTIAL EQUATIONS 297 Definition 2.1 [4, 6, 7]. The left-sided mixed Riemann – Liouville integral of order r > 0 of a function w ∈ L1(I) is defined by (Irθw) (t) = 1 Γ(r) t∫ 0 (t− s)r−1w(s)ds for a.e. t ∈ I, where Γ(·) is the (Euler’s) Gamma function defined by Γ(ξ) = ∞∫ 0 tξ−1e−tdt, ξ > 0. Notice that for all r, r1, r2 > 0 and each w ∈ C, we have Ir0w ∈ C, and (Ir10 I r2 0 w) (t) = (Ir1+r20 w)(t) for a.e. t ∈ I. Definition 2.2 [4, 6, 7]. The Riemann – Liouville fractional derivative of order r ∈ (0, 1] of a function w ∈ L1(I) is defined by (Dr 0w) (t) = ( d dt I1−r0 w ) (t) = = 1 Γ(1− r) d dt t∫ 0 (t− s)−rw(s)ds for a.e. t ∈ I. Let r ∈ (0, 1], γ ∈ [0, 1) and w ∈ C1−γ(I). Then the following expression leads to the left inverse operator as follows. (Dr 0I r 0w) (t) = w(t) for all t ∈ (0, T ]. Moreover, if I1−r0 w ∈ C1 1−γ(I), then the following composition is proved in [6]: (Ir0D r 0w) (t) = w(t)− (I1−r0 w)(0+) Γ(r) tr−1 for all t ∈ (0, T ]. Definition 2.3 [4, 6, 7]. The Caputo fractional derivative of order r ∈ (0, 1] of a function w ∈ L1(I) is defined by (cDr 0w) (t) = ( I1−r0 d dt w ) (t) = = 1 Γ(1− r) t∫ 0 (t− s)−r d ds w(s)ds for all t ∈ I. In [1], R. Hilfer studied applications of a generalized fractional operator having the Riemann –Liouville and the Caputo derivatives as specific cases (see also [22 – 24]. ISSN 1562-3076. Нелiнiйнi коливання, 2018, т. 21, № 3 298 S. ABBAS, M. BENCHOHRA, J. HENDERSON Definition 2.4 (Hilfer derivative). Let α ∈ (0, 1), β ∈ [0, 1], w ∈ L1(I), I (1−α)(1−β) 0 w ∈ ∈ AC1(I). The Hilfer fractional derivative of order α and type β of w is defined as( Dα,β 0 w ) (t) = ( I β(1−α) 0 d dt I (1−α)(1−β) 0 w ) (t) for all t ∈ I. (2) Properties. Let α ∈ (0, 1), β ∈ [0, 1], γ = α+ β − αβ, and w ∈ L1(I). 1. The operator ( Dα,β 0 w ) (t) can be written as ( Dα,β 0 w ) (t) = ( I β(1−α) 0 d dt I1−γ0 w ) (t) = ( I β(1−α) 0 Dγ 0w ) (t) for all t ∈ I. Moreover, the parameter γ satisfies γ ∈ (0, 1], γ ≥ α, γ > β, 1− γ < 1− β(1− α). 2. The generalization (2) for β = 0, coincides with the Riemann-Liouville derivative and for β = 1 with the Caputo derivative, Dα,0 0 = Dα 0 and Dα,1 0 = cDα 0 . 3. If Dβ(1−α) 0 w exists and is in L1(I), then( Dα,β 0 Iα0 w ) (t) = ( I β(1−α) 0 D β(1−α) 0 w ) (t) for a.e. t ∈ I. Furthermore, if w ∈ Cγ(I) and I1−β(1−α)0 w ∈ C1 γ(I), then( Dα,β 0 Iα0 w ) (t) = w(t) for a.e. t ∈ I. 4. If Dγ 0w exists and is in L1(I), then ( Iα0D α,β 0 w ) (t) = (Iγ0D γ 0w) (t) = w(t)− I1−γ0 (0+) Γ(γ) tγ−1 for a.e. t ∈ I. Corollary 2.1. Let h ∈ Cγ(I). Then the linear problem ( Dα,β 0 u ) (t) = h(t), t ∈ I := [0, T ],( I1−γ0 u ) (t) ∣∣∣ t=0 = φ, has a unique solution given by u(t) = φ Γ(γ) tγ−1 + (Iα0 h) (t). From the above corollary, we have the following lemma. ISSN 1562-3076. Нелiнiйнi коливання, 2018, т. 21, № 3 EXISTENCE AND ATTRACTIVITY RESULTS FOR HILFER FRACTIONAL DIFFERENTIAL EQUATIONS 299 Lemma 2.1. Let f : I × R → R be such that f(·, u(·)) ∈ BCγ for any u ∈ BCγ . Then problem (1) is equivalent to the problem of the solutions of the integral equation u(t) = φ Γ(γ) tγ−1 + (Iα0 f(·, u(·))) (t). Let ∅ 6= Ω ⊂ BC, and let G : Ω→ Ω, and consider the solutions of the equation (Gu)(t) = u(t). (3) We introduce the following concept of attractivity of solutions for equation (3). Definition 2.5. Solutions of equation (3) are locally attractive if there exists a ball B(u0, η) in the space BC such that, for arbitrary solutions v = v(t) and w = w(t) of equations (3) belonging to B(u0, η) ∩ Ω, we have lim t→∞ (v(t)− w(t)) = 0. (4) When the limit (4) is uniform with respect to B(u0, η) ∩ Ω, solutions of equation (3) are said to be uniformly locally attractive (or equivalently that solutions of (3) are locally asymptotically stable). Lemma 2.2 [31, p. 62]. Let D ⊂ BC. Then D is relatively compact in BC if the following conditions hold: (a) D is uniformly bounded in BC; (b) the functions belonging to D are almost equicontinuous on R+, i.e., equicontinuous on every compact of R+; (c) the functions from D are equiconvergent, that is, given ε > 0 there exists T (ε) > 0 such that |u(t)− limt→∞ u(t)| < ε for any t ≥ T (ε) and u ∈ D. In the sequel we will make use of the following fixed point theorems. Theorem 2.1 (Schauder fixed point theorem, [32]). Let E be a Banach space and Q be a nonempty bounded convex and closed subset of E, and let N : Q → Q be a compact and continuous map. Then N has at least one fixed point in Q. 3. Existence and attractivity results. Let us start by defining what we mean by a solution of the problem (1). Definition 3.1. By a solution of the problem (1) we mean a measurable function u ∈ BCγ that satisfies the condition (I1−γ0 u)(0+) = φ, and the equation ( Dα,β 0 u ) (t) = f(t, u(t)) on R+. The following hypotheses will be used in the sequel. (H1) The function t 7→ f(t, u) is measurable on R+ for each u ∈ BCγ , and the function u 7→ f(t, u) is continuous on BCγ for a.e. t ∈ R+, (H2) There exists a continuous function p : R+ → R+ such that |f(t, u)| ≤ p(t) 1 + |u| for a.e. t ∈ R+ and each u ∈ R, and lim t→∞ t1−γ(Iα0 p)(t) = 0. ISSN 1562-3076. Нелiнiйнi коливання, 2018, т. 21, № 3 300 S. ABBAS, M. BENCHOHRA, J. HENDERSON Set p∗ = sup t∈R+ t1−γ (Iα0 p) (t). Now, we present a theorem concerning the existence and the attractivity of solutions of our problem (1). Theorem 3.1. Assume that the hypotheses (H1) and (H2) hold. Then the problem (1) has at least one solution defined on R+. Moreover, solutions of problem (1) are uniformly locally attractive. Proof. Consider the operator N such that, for any u ∈ BCγ , (Nu)(t) = φ Γ(γ) tγ−1 + t∫ 0 (t− s)α−1 f(s, u(s)) Γ(α) ds. The operator N maps BCγ into BCγ . Indeed the map N(u) is continuous on R+ for any u ∈ BCγ , and for each t ∈ R+, we have ∣∣t1−γ(Nu)(t) ∣∣ ≤ |φ| Γ(γ) + t1−γ Γ(α) t∫ 0 (t− s)α−1|f(s, u(s))|ds ≤ ≤ |φ| Γ(γ) + t1−γ Γ(α) t∫ 0 (t− s)α−1p(s) ds ≤ |φ| Γ(γ) + p∗. Thus ‖N(u)‖BC ≤ |φ| Γ(γ) + p∗ := R. (5) Hence, N(u) ∈ BCγ . This proves that the operator N maps BCγ into itself. By Lemma 2.1, the problem of finding solutions of the problem (1) is reduced to finding the solutions of the operator equation N(u) = u. Equation (5) implies that N transforms the ball BR := B(0, R) = {w ∈ BCγ : ‖w‖BC ≤ R} into itself. We shall show that the operator N satisfies all the assumptions of Theorem 2.1. The proof will be given in several steps. Step 1. N is continuous. Let {un}n∈N be a sequence such that un → u in BR. Then, for each t ∈ R+, we have ∣∣t1−γ(Nun)(t)− t1−γ(Nu)(t) ∣∣ ≤ t1−γ Γ(α) t∫ 0 (t− s)α−1|f(s, un(s))− f(s, u(s))| ds. (6) Case 1. If t ∈ [0, T ], T > 0, then, since un → u as n → ∞ and f is continuous, by the Lebesgue dominated convergence theorem, equation (6) implies ‖N(un)−N(u)‖BC → 0 as n→∞. ISSN 1562-3076. Нелiнiйнi коливання, 2018, т. 21, № 3 EXISTENCE AND ATTRACTIVITY RESULTS FOR HILFER FRACTIONAL DIFFERENTIAL EQUATIONS 301 Case 2. If t ∈ (T,∞), T > 0, then from the hypotheses and (6), we get ∣∣t1−γ(Nun)(t)− t1−γ(Nu)(t) ∣∣ ≤ 2 t1−γ Γ(α) t∫ 0 (t− s)α−1p(s) ds. (7) Since un → u as n→∞ and t1−γ(Iα0 p)(t)→ 0 as t→∞, then (7) gives ‖N(un)−N(u)‖BC → 0 as n→∞. Step 2. N(BR) is uniformly bounded. This is clear since N(BR) ⊂ BR and BR is bounded. Step 3. N(BR) is equicontinuous on every compact subset [0, T ] of R+, T > 0. Let t1, t2 ∈ [0, T ], t1 < t2, and let u ∈ BR. Then we have∣∣∣t1−γ2 (Nu)(t2)− t1−γ1 (Nu)(t1) ∣∣∣ ≤ ≤ ∣∣∣∣∣∣t1−γ2 t2∫ 0 (t2 − s)α−1 f(s, u(s)) Γ(α) ds− t1−γ1 t1∫ 0 (t1 − s)α−1 f(s, u(s)) Γ(α) ds ∣∣∣∣∣∣ ≤ ≤ t1−γ2 t2∫ t1 (t2 − s)α−1 |f(s, u(s))| Γ(α) ds+ + t1∫ 0 ∣∣∣t1−γ2 (t2 − s)α−1 − t1−γ1 (t1 − s)α−1 ∣∣∣ |f(s, u(s))| Γ(α) ds ≤ ≤ t1−γ2 t2∫ t1 (t2 − s)α−1 p(s) Γ(α) ds+ t1∫ 0 ∣∣∣t1−γ2 (t2 − s)α−1 − t1−γ1 (t1 − s)α−1 ∣∣∣ p(s) Γ(α) ds. Thus, from the continuity of the function p and by setting p∗ = supt∈[0,T ] p(t), we get∣∣∣t1−γ2 (Nu)(t2)− t1−γ1 (Nu)(t1) ∣∣∣ ≤ p∗T 1−γ+α Γ(1 + α) (t2 − t1)α+ + p∗ Γ(α) t1∫ 0 ∣∣∣t1−γ2 (t2 − s)α−1 − t1−γ1 (t1 − s)α−1 ∣∣∣ ds. As t1 → t2, the right-hand side of the above inequality tends to zero. Step 4. N(BR) is equiconvergent. Let t ∈ R+ and u ∈ BR. Then we have ∣∣t1−γ(Nu)(t) ∣∣ ≤ |φ| Γ(γ) + t1−γ Γ(α) t∫ 0 (t− s)α−1|f(s, u(s))| ds ≤ ISSN 1562-3076. Нелiнiйнi коливання, 2018, т. 21, № 3 302 S. ABBAS, M. BENCHOHRA, J. HENDERSON ≤ |φ| Γ(γ) + t1−γ Γ(α) t∫ 0 (t− s)α−1p(s) ds ≤ |φ| Γ(γ) + t1−γ (Iα0 p) (t). Since t1−γ(Iα0 p)(t)→ 0, as t→ +∞, we get |(Nu)(t)| ≤ |φ| t1−γΓ(γ) + t1−γ(Iα0 p)(t) t1−γ → 0 as t→ +∞. Hence, |(Nu)(t)− (Nu)(+∞)| → 0 as t→ +∞. As a consequence of Steps 1 to 4, together with the Lemma 2.2, we can conclude that N : BR → → BR is continuous and compact. From an application of Schauder’s theorem (Theorem 2.1), we deduce that N has a fixed point u which is a solution of the problem (1) on R+. Step 5. The uniform local attractivity of solutions. Let us assume that u0 is a solution of problem (1) with the conditions of this theorem. Taking u ∈ B(u0, 2p ∗), we have∣∣t1−γ(Nu)(t)− t1−γu0(t) ∣∣ = ∣∣t1−γ(Nu)(t)− t1−γ(Nu0)(t) ∣∣ ≤ ≤ t1−γ Γ(α) t∫ 0 (t− s)α−1|f(s, u(s))− f(s, u0(s))|ds ≤ ≤ 2t1−γ Γ(α) t∫ 0 (t− s)α−1p(s)ds ≤ 2p∗. Thus, we get ‖N(u)− u0‖BC ≤ 2p∗. Hence, we obtain that N is a continuous function such that N (B (u0, 2p ∗)) ⊂ B (u0, 2p ∗) . Moreover, if u is a solution of problem (1), then |u(t)− u0(t)| = |(Nu)(t)− (Nu0)(t)| ≤ ≤ 1 Γ(α) t∫ 0 (t− s)α−1|f(s, u(s))− f(s, u0(s))| ds ≤ 2 (Iα0 p) (t). Thus |u(t)− u0(t)| ≤ 2t1−γ (Iα0 p) (t) t1−γ . (8) By using (8) and the fact that limt→∞ t 1−γ (Iα0 p) (t) = 0, we deduce that lim t→∞ |u(t)− u0(t)| = 0. Consequently, all solutions of problem (1) are uniformly locally attractive. ISSN 1562-3076. Нелiнiйнi коливання, 2018, т. 21, № 3 EXISTENCE AND ATTRACTIVITY RESULTS FOR HILFER FRACTIONAL DIFFERENTIAL EQUATIONS 303 4. An example. As an application of our results we consider the following problem of Hilfer fractional differential equation of the form ( D 1/2,1/2 0 u ) (t) = f(t, u(t)), t ∈ R+,( I 1/4 0 u ) (t)|t=0 = 1, (9) where f(t, u) = ct−1/4 sin t 64(1 + √ t)(1 + |u|) , t ∈ (0,∞), u ∈ R, f(0, u) = 0, u ∈ R, and c = 9 √ π 16 . Clearly, the function f is continuous. The hypothesis (H2) is satisfied withp(t) = ct−1/4| sin t| 64(1 + √ t) , t ∈ (0,∞), p(0) = 0. Also, we have t1−γI 1/2 0 p(t) = t1/4 Γ ( 1 2 ) t∫ 0 (t− τ)−1/2p(τ)dτ ≤ 1 4 t−1/4 → 0 as t→∞. All conditions of Theorem 3.1 are satisfied. Hence, the problem (9) has at least one solution defined on R+, and solutions of this problem are uniformly locally attractive. References 1. Hilfer R. Applications of fractional calculus in physics. – Singapore: World Sci., 2000. – 472 p. 2. Tarasov V. E. Fractional dynamics: application of fractional calculus to dynamics of particles, fields and media. – Beijing, Heidelberg: Springer-Verlag, 2010. – 505 p. 3. Abbas S., Benchohra M. Advanced functional evolution equations and inclusions // Dev. Math. – Cham: Springer Int. Publ, 2015. – 39. – 408 p. 4. Abbas S., Benchohra M., N’Guérékata G. M. Topics in fractional differential equations // Dev. Math. – New York: Springer Int. Publ., 2015. – 27. – 398 p. 5. Abbas S., Benchohra M., N’Guérékata G. M. Advanced fractional differential and integral equations. – New York: Nova Sci. Publ., 2014. – 377 p. 6. Samko S. G., Kilbas A. A., Marichev O. I. Fractional integrals and derivatives: theory and applications. – Tokyo, Paris, Berlin: Gordon and Breach Sci. Publ., 1993. 7. Kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and applications of fractional differential equations. – Amsterdam: Elsevier Sci., 2006. – 540 p. 8. Zhou Y. Basic theory of fractional differential equations. – Singapore: World Sci., 2014. – 304 p. 9. Zhou Y. Fractional evolution equations and inclusions: analysis and control. – Elsevier Ltd., Acad. Press, 2016. – 294 p. 10. Abbas S., Albarakati W. A., Benchohra M., Hilal E. M. Global existence and stability results for partial fractional random differential equations // J. Appl. Anal. – 2015. – 21, № 2. – P. 79 – 87. ISSN 1562-3076. Нелiнiйнi коливання, 2018, т. 21, № 3 304 S. ABBAS, M. BENCHOHRA, J. HENDERSON 11. Abbas S., Benchohra M. Global asymptotic stability for nonlinear multi-delay differential equations of fractional order // Proc. A. Ramadze Math. Inst. – 2013. – 161. – P. 1 – 13. 12. Abbas S., Benchohra M. Existence and stability of nonlinear fractional order Riemann –Liouville, Volterra – Stieltjes multi-delay integral equations // J. Integral Equations Appl. – 2013. – 25. – P. 143 – 158. 13. Abbas S., Benchohra M., Henderson J. Asymptotic attractive nonlinear fractional order Riemann –Liouville integral equations in Banach algebras // Nonlinear Stud. – 2013. – 20, № 1. – P. 1 – 10. 14. Benchohra M., Henderson J., Ntouyas S. K. Ouahab A. Existence results for functional differential equations of fractional order // J. Math. Anal. Appl. – 2008. – 338. – P. 1340 – 1350. 15. Benchohra M., Souid M. S. Integrable solutions for implicit fractional order differential equations // Transylv. J. Math. Mech. – 2014. – 6, № 2. – P. 101 – 107. 16. Benchohra M., Souid M. S. Integrable solutions for implicit fractional order functional differential equations with infinite delay // Arch. Math. (Brno). – 2015. – 51. – P. 13 – 22. 17. Lakshmikantham V., Vasundhara Devi J. Theory of fractional differential equations in a Banach space // Eur. J. Pure Appl. Math. – 2008. – 1. – P. 38 – 45. 18. Lakshmikantham V., Vatsala A. S. Basic theory of fractional differential equations // Nonlinear Anal. – 2008. – 69. – P. 2677 – 2682. 19. LakshmikanthamV., Vatsala A. S. General uniqueness andmonotone iterative technique for fractional differential equations // Appl. Math. Lett. – 2008. – 21. – P. 828 – 834. 20. Furati K. M., Kassim M. D. Non-existence of global solutions for a differential equation involving Hilfer fractional derivative // Electron. J. Differential Equations. – 2013. – 2013, № 235. – P. 1 – 10. 21. Furati K. M., Kassim M. D., Tatar N. E-. Existence and uniqueness for a problem involving Hilfer fractional derivative // Comput. Math. Appl. – 2012. – 64. – P. 1616 – 1626. 22. Hilfer R. Threefold introduction to fractional derivatives // Anomalous Transp.: Found. and Appl. – R. Klages et al. (eds.). – Weinheim: Wiley-VCH, 2008. – P. 17 – 73. 23. Kamocki R., Obczńnski C. On fractional Cauchy-type problems containing Hilfer’s derivative // Electron. J. Qual. Theory Differ. Equ. – 2016. – № 50. – P. 1 – 12. 24. Tomovski Ž., Hilfer R., SrivastavaH.M. Fractional and operational calculus with generalized fractional derivative operators and Mittag – Leffler type functions // Integral Transforms Spec. Funct. – 2010. – 21, № 11. – P. 797 – 814. 25. Wang J. -R., Zhang Y. Nonlocal initial value problems for differential equations with Hilfer fractional derivative // Appl. Math. Comput. – 2015. – 266. – P. 850 – 859. 26. Abbas S., AlbarakatiW., BenchohraM. Existence and attractivity results forVolterra type nonlinearMulti –Delay Hadamard – Stieltjes fractional integral equations // PanAmer. Math. J. – 2016. – 26, № 1. – P. 1 – 17. 27. Abbas S., Benchohra M. Existence and attractivity for fractional order integral equations in Fréchet spaces // Discuss. Math. Differ. Incl. Control Optim. – 2013. – 33, № 1. – P. 1 – 17. 28. Abbas S., Benchohra M. On the existence and local asymptotic stability of solutions of fractional order integral equations // Comment. Math. – 2012. – 52, № 1. – P. 91 – 100. 29. Abbas S., Benchohra M., Diagana T. Existence and attractivity results for some fractional order partial integro- differential equations with delay // Afr. Diaspora J. Math. – 2013. – 15, № 2. – P. 87 – 100. 30. Abbas S., Benchohra M., Nieto J. J. Global attractivity of solutions for nonlinear fractional order Riemann – Liouville Volterra – Stieltjes partial integral equations // Electron. J. Qual. Theory Differ. Equ. – 2012. – 81. – P. 1 – 15. 31. Corduneanu C. Integral equations and stability of feedback systems. – New York: Acad. Press, 1973. – 238 p. 32. Granas A., Dugundji J. Fixed point theory. – New York: Springer-Verlag, 2003. – 690 p. Received 16.11.16 ISSN 1562-3076. Нелiнiйнi коливання, 2018, т. 21, № 3