Фундаментальні розв'язки задачі Коші для інваріантних Λ(μ)-гіперболічних операторів на ріманових многовидах

Одержано аналiтичне зображення фундаментального розв’язку задачi Кошi для строго гiперболiчних за I. Г. Петровським Λ(µ) -iнварiантних гiперболiчних рiвнянь та систем рiвнянь в евклiдових просторах i на спецiальних рiманових многовидах. В основi лежать запровадженi iнтегральнi перетворення, породже...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Нелінійні коливання
Дата:2005
Автор: Конет, І.М.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут математики НАН України 2005
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/177880
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Фундаментальні розв'язки задачі Коші для інваріантних Λ(μ)-гіперболічних операторів на ріманових многовидах / І.М. Конет // Нелінійні коливання. — 2005. — Т. 8, № 2. — С. 224-233. — Бібліогр.: 8 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Одержано аналiтичне зображення фундаментального розв’язку задачi Кошi для строго гiперболiчних за I. Г. Петровським Λ(µ) -iнварiантних гiперболiчних рiвнянь та систем рiвнянь в евклiдових просторах i на спецiальних рiманових многовидах. В основi лежать запровадженi iнтегральнi перетворення, породженi iнтегральним зображенням мiри Дiрака. We find an analytic representation of a fundamental solution of the Cauchy problem for I. G. Petrovsky strictly hyperbolic Λ(µ) -invariant hyperbolic equations and systems in Euclidean spaces and on special Riemannian manifolds. This is done on the basis of the introduced integral transformations generated by an integral representation of the Dirac measure.
ISSN:1562-3076