Ограниченные решения линейных дифференциальных уравнений в банаховом пространстве

Отримано критерiй iснування обмежених на всiй дiйснiй осi розв’язкiв лiнiйного неоднорiдного диференцiального рiвняння у банаховому просторi за припущення, що однорiдне рiвняння допускає експоненцiальну дихотомiю на пiвосях. Даний результат є узагальненням леми К. Палмера на випадок нескiнченновим...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Нелінійні коливання
Дата:2006
Автори: Бойчук, А.А., Покутний, А.А.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 2006
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/178064
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Ограниченные решения линейных дифференциальных уравнений в банаховом пространстве / А.А. Бойчук, А.А. Покутний // Нелінійні коливання. — 2006. — Т. 9, № 1. — С. 3-14. — Бібліогр.: 8 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-178064
record_format dspace
spelling Бойчук, А.А.
Покутний, А.А.
2021-02-17T18:34:11Z
2021-02-17T18:34:11Z
2006
Ограниченные решения линейных дифференциальных уравнений в банаховом пространстве / А.А. Бойчук, А.А. Покутний // Нелінійні коливання. — 2006. — Т. 9, № 1. — С. 3-14. — Бібліогр.: 8 назв. — рос.
1562-3076
https://nasplib.isofts.kiev.ua/handle/123456789/178064
517.9
Отримано критерiй iснування обмежених на всiй дiйснiй осi розв’язкiв лiнiйного неоднорiдного диференцiального рiвняння у банаховому просторi за припущення, що однорiдне рiвняння допускає експоненцiальну дихотомiю на пiвосях. Даний результат є узагальненням леми К. Палмера на випадок нескiнченновимiрних просторiв. Розглянуто приклади iснування обмежених розв’язкiв зчисленних систем звичайних диференцiальних систем.
For a linear nonhomogeneous differential equation in a Banach space, we find a criterion for existence of solutions that are bounded on the whole real axis with the assumption that the homogeneous equation admits exponential dichotomy on the half-axes. This result is a generalization of K. Palmer’s lemma to the case of infinite dimensional spaces. We consider examples of countable systems of ordinary differential equations that have bounded solutions.
ru
Інститут математики НАН України
Нелінійні коливання
Ограниченные решения линейных дифференциальных уравнений в банаховом пространстве
Обмежені розв'язки лінійних диференціальних рівнянь у банаховому просторі
Bounded solutions of linear differential equations in a Banach space
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Ограниченные решения линейных дифференциальных уравнений в банаховом пространстве
spellingShingle Ограниченные решения линейных дифференциальных уравнений в банаховом пространстве
Бойчук, А.А.
Покутний, А.А.
title_short Ограниченные решения линейных дифференциальных уравнений в банаховом пространстве
title_full Ограниченные решения линейных дифференциальных уравнений в банаховом пространстве
title_fullStr Ограниченные решения линейных дифференциальных уравнений в банаховом пространстве
title_full_unstemmed Ограниченные решения линейных дифференциальных уравнений в банаховом пространстве
title_sort ограниченные решения линейных дифференциальных уравнений в банаховом пространстве
author Бойчук, А.А.
Покутний, А.А.
author_facet Бойчук, А.А.
Покутний, А.А.
publishDate 2006
language Russian
container_title Нелінійні коливання
publisher Інститут математики НАН України
format Article
title_alt Обмежені розв'язки лінійних диференціальних рівнянь у банаховому просторі
Bounded solutions of linear differential equations in a Banach space
description Отримано критерiй iснування обмежених на всiй дiйснiй осi розв’язкiв лiнiйного неоднорiдного диференцiального рiвняння у банаховому просторi за припущення, що однорiдне рiвняння допускає експоненцiальну дихотомiю на пiвосях. Даний результат є узагальненням леми К. Палмера на випадок нескiнченновимiрних просторiв. Розглянуто приклади iснування обмежених розв’язкiв зчисленних систем звичайних диференцiальних систем. For a linear nonhomogeneous differential equation in a Banach space, we find a criterion for existence of solutions that are bounded on the whole real axis with the assumption that the homogeneous equation admits exponential dichotomy on the half-axes. This result is a generalization of K. Palmer’s lemma to the case of infinite dimensional spaces. We consider examples of countable systems of ordinary differential equations that have bounded solutions.
issn 1562-3076
url https://nasplib.isofts.kiev.ua/handle/123456789/178064
citation_txt Ограниченные решения линейных дифференциальных уравнений в банаховом пространстве / А.А. Бойчук, А.А. Покутний // Нелінійні коливання. — 2006. — Т. 9, № 1. — С. 3-14. — Бібліогр.: 8 назв. — рос.
work_keys_str_mv AT boičukaa ograničennyerešeniâlineinyhdifferencialʹnyhuravneniivbanahovomprostranstve
AT pokutniiaa ograničennyerešeniâlineinyhdifferencialʹnyhuravneniivbanahovomprostranstve
AT boičukaa obmeženírozvâzkilíníinihdiferencíalʹnihrívnânʹubanahovomuprostorí
AT pokutniiaa obmeženírozvâzkilíníinihdiferencíalʹnihrívnânʹubanahovomuprostorí
AT boičukaa boundedsolutionsoflineardifferentialequationsinabanachspace
AT pokutniiaa boundedsolutionsoflineardifferentialequationsinabanachspace
first_indexed 2025-12-07T21:07:05Z
last_indexed 2025-12-07T21:07:05Z
_version_ 1850885144935661568