Бифуркации вращающихся структур в параболическом функционально-дифференциальном уравнении
Дослiджено бiфуркацiю Андронова – Хопфа народження перiодичного розв’язку iз просторово-однорiдного стацiонарного розв’язку задачi Неймана на крузi для параболiчного рiвняння з перетворенням просторових змiнних у випадку, коли це перетворення є композицiєю перетворень повороту на сталий кут i радiа...
Saved in:
| Published in: | Нелінійні коливання |
|---|---|
| Date: | 2006 |
| Main Authors: | , |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут математики НАН України
2006
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/178103 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Бифуркации вращающихся структур в параболическом функционально-дифференциальном уравнении / Е.П. Белан, О.Б. Лыкова // Нелінійні коливання. — 2006. — Т. 9, № 2. — С. 55-169. — Бібліогр.: 26 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Дослiджено бiфуркацiю Андронова – Хопфа народження перiодичного розв’язку iз просторово-однорiдного стацiонарного розв’язку задачi Неймана на крузi для параболiчного рiвняння з
перетворенням просторових змiнних у випадку, коли це перетворення є композицiєю перетворень повороту на сталий кут i радiального стискання. При загальних припущеннях доведено
теорему iснування обертаючої структури, отримано умови її орбiтальної стiйкостi та побудовано її асимптотичну форму.
We investigate the Andronov – Hopf bifurcation of creation of a periodic solution from a spatially homogeneous stationary solution of the Neumann problem on a disk for a parabolic equation with a transformation of spatial variables in the case where the transformation is a composition of a rotation at a constant
angle and a radial contraction. Under general assumptions we prove the existence of a rotating structure,
find conditions for its orbital stability and construct its asymptotic form.
|
|---|---|
| ISSN: | 1562-3076 |