Singular periodic impulse problems

We obtain an existence principle for the impulsive periodic boundary-value problem u’’ + cu’ = g(x) + e(t), u(ti+) = u(ti) + Ji(u, u’ ), u’(ti+) = u’(ti) + Mi(u, u’), i = 1, . . ., m, u(0) = u(T), u’(0) = u’(T), where g ∈ C(0,∞) can have a strong singularity at the origin. Furthermore, we assume tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Нелінійні коливання
Datum:2008
Hauptverfasser: Halas, Z., Tvrdy, M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2008
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/178156
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Singular periodic impulse problems / Z. Halas, M. Tvrdy // Нелінійні коливання. — 2008. — Т. 11, № 1. — С. 32-44. — Бібліогр.: 24 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-178156
record_format dspace
spelling Halas, Z.
Tvrdy, M.
2021-02-18T07:31:09Z
2021-02-18T07:31:09Z
2008
Singular periodic impulse problems / Z. Halas, M. Tvrdy // Нелінійні коливання. — 2008. — Т. 11, № 1. — С. 32-44. — Бібліогр.: 24 назв. — англ.
1562-3076
https://nasplib.isofts.kiev.ua/handle/123456789/178156
517.9
We obtain an existence principle for the impulsive periodic boundary-value problem u’’ + cu’ = g(x) + e(t), u(ti+) = u(ti) + Ji(u, u’ ), u’(ti+) = u’(ti) + Mi(u, u’), i = 1, . . ., m, u(0) = u(T), u’(0) = u’(T), where g ∈ C(0,∞) can have a strong singularity at the origin. Furthermore, we assume that 0 < t1 < . . . < tm < T, e ∈ L₁ [0, T], c ∈ R and Ji , Mi , i = 1, 2, . . . , m, are continuous mappings of G[0, T] × G[0, T] into R, where G[0, T] denotes the space of functions regulated on [0, T]. The presented principle is based on an averaging procedure similar to that introduced by Manasevich ´ and Mawhin for singular periodic problems with p-Laplacian.
Отримано принцип iснування розв’язку перiодичної граничної задачi з iмпульсною дiєю, u’’ + c u’ = g(x) + e(t), u(ti+) = u(ti) + Ji(u, u’), u’(ti+) = u’(ti) + Mi(u, u’), i = 1, . . ., m, u(0) = u(T), u’(0) = u”(T), де g ∈ C(0,∞) може мати сильну особливiсть у нулi. Далi, припускається, що 0 < t1 < . . . < tm < T, e ∈ L₁ [0, T], c ∈ R i Ji , Mi , i = 1, 2, . . . , m, — неперервнi вiдображення з G[0, T] × G[0, T] в R, де G[0, T] — простiр функцiй, регульованих на [0, T]. Отримання принципу базується на процедурi усереднення, яка є аналогом процедури, запро- понованої Менасевiчем та Мавхiним, для сингулярних перiодичних задач iз p-лапласiаном.
en
Інститут математики НАН України
Нелінійні коливання
Singular periodic impulse problems
Сингулярні періодичні імпульсні задачі
Сингулярные импульсные периодические задачи
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Singular periodic impulse problems
spellingShingle Singular periodic impulse problems
Halas, Z.
Tvrdy, M.
title_short Singular periodic impulse problems
title_full Singular periodic impulse problems
title_fullStr Singular periodic impulse problems
title_full_unstemmed Singular periodic impulse problems
title_sort singular periodic impulse problems
author Halas, Z.
Tvrdy, M.
author_facet Halas, Z.
Tvrdy, M.
publishDate 2008
language English
container_title Нелінійні коливання
publisher Інститут математики НАН України
format Article
title_alt Сингулярні періодичні імпульсні задачі
Сингулярные импульсные периодические задачи
description We obtain an existence principle for the impulsive periodic boundary-value problem u’’ + cu’ = g(x) + e(t), u(ti+) = u(ti) + Ji(u, u’ ), u’(ti+) = u’(ti) + Mi(u, u’), i = 1, . . ., m, u(0) = u(T), u’(0) = u’(T), where g ∈ C(0,∞) can have a strong singularity at the origin. Furthermore, we assume that 0 < t1 < . . . < tm < T, e ∈ L₁ [0, T], c ∈ R and Ji , Mi , i = 1, 2, . . . , m, are continuous mappings of G[0, T] × G[0, T] into R, where G[0, T] denotes the space of functions regulated on [0, T]. The presented principle is based on an averaging procedure similar to that introduced by Manasevich ´ and Mawhin for singular periodic problems with p-Laplacian. Отримано принцип iснування розв’язку перiодичної граничної задачi з iмпульсною дiєю, u’’ + c u’ = g(x) + e(t), u(ti+) = u(ti) + Ji(u, u’), u’(ti+) = u’(ti) + Mi(u, u’), i = 1, . . ., m, u(0) = u(T), u’(0) = u”(T), де g ∈ C(0,∞) може мати сильну особливiсть у нулi. Далi, припускається, що 0 < t1 < . . . < tm < T, e ∈ L₁ [0, T], c ∈ R i Ji , Mi , i = 1, 2, . . . , m, — неперервнi вiдображення з G[0, T] × G[0, T] в R, де G[0, T] — простiр функцiй, регульованих на [0, T]. Отримання принципу базується на процедурi усереднення, яка є аналогом процедури, запро- понованої Менасевiчем та Мавхiним, для сингулярних перiодичних задач iз p-лапласiаном.
issn 1562-3076
url https://nasplib.isofts.kiev.ua/handle/123456789/178156
citation_txt Singular periodic impulse problems / Z. Halas, M. Tvrdy // Нелінійні коливання. — 2008. — Т. 11, № 1. — С. 32-44. — Бібліогр.: 24 назв. — англ.
work_keys_str_mv AT halasz singularperiodicimpulseproblems
AT tvrdym singularperiodicimpulseproblems
AT halasz singulârníperíodičníímpulʹsnízadačí
AT tvrdym singulârníperíodičníímpulʹsnízadačí
AT halasz singulârnyeimpulʹsnyeperiodičeskiezadači
AT tvrdym singulârnyeimpulʹsnyeperiodičeskiezadači
first_indexed 2025-12-07T15:19:06Z
last_indexed 2025-12-07T15:19:06Z
_version_ 1850863251892469760