Ginzburg-Landau system of complex modulation equations for a distributed nonlinear-dispersive transmission line
The envelope modulation of a monoinductance transmission line is reduced to generalized coupled Ginzburg – Landau equations from which is deduced a single cubic-quintic Ginzburg – Landau equation containing derivatives with respect to the spatial variable in the cubic terms. We investigate the modul...
Saved in:
| Published in: | Нелінійні коливання |
|---|---|
| Date: | 2006 |
| Main Authors: | Kengne, E., Vaillancourt, R. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2006
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/178173 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Ginzburg-Landau system of complex modulation equations for a distributed nonlinear-dispersive transmission line / E. Kengne, R. Vaillancourt // Нелінійні коливання. — 2006. — Т. 9, № 4. — С. 451-489. — Бібліогр.: 31 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Modified Ginzburg-Landau equation and Benjamin-Feir instability
by: Kengne, E.
Published: (2003) -
Envelope modulational instability in the nonlinear dissipative transmission line
by: Kengne, E.
Published: (2002) -
Stability of shock waves in the modified quintic complex Ginzburg –Landau equation
by: Pelap, F.B., et al.
Published: (2007) -
Mirror Symmetry for Nonabelian Landau-Ginzburg Models
by: Priddis, Nathan, et al.
Published: (2020) -
The current density order based on the Ginzburg-Landau description
by: Bousnane, Z., et al.
Published: (2007)