Second order nonlinear differential equations with an infinite set of periodic solutions

For the differential equation u′′ = f(t, u, u′), where the function f : R × R² → R is periodic in the first argument and f(t, x, 0) ≡ 0, sufficient conditions for the existence of a continuum of nonconstant periodic solutions are found. Для диференцiального рiвняння u′′ = f(t, u, u′), де функцiя f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Нелінійні коливання
Datum:2008
1. Verfasser: Kiguradze, I.T.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2008
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/178191
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Second order nonlinear differential equations with an infinite set of periodic solutions / I.T. Kiguradze // Нелінійні коливання. — 2008. — Т. 11, № 4. — С. 495-500. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-178191
record_format dspace
spelling Kiguradze, I.T.
2021-02-18T08:11:12Z
2021-02-18T08:11:12Z
2008
Second order nonlinear differential equations with an infinite set of periodic solutions / I.T. Kiguradze // Нелінійні коливання. — 2008. — Т. 11, № 4. — С. 495-500. — Бібліогр.: 16 назв. — англ.
1562-3076
https://nasplib.isofts.kiev.ua/handle/123456789/178191
517.9
For the differential equation u′′ = f(t, u, u′), where the function f : R × R² → R is periodic in the first argument and f(t, x, 0) ≡ 0, sufficient conditions for the existence of a continuum of nonconstant periodic solutions are found.
Для диференцiального рiвняння u′′ = f(t, u, u′), де функцiя f : R × R² → R є перiодичною за першим аргументом i f(t, x, 0) ≡ 0, знайдено необхiднi умови для iснування континууму перiодичних розв’язкiв, що не є сталими.
This work is supported by the Georgian National Science Foundation (Project № GNSF/ST06/3-002).
en
Інститут математики НАН України
Нелінійні коливання
Second order nonlinear differential equations with an infinite set of periodic solutions
Нелінійні диференціальні рівняння другого порядку з нескінченною множиною періодичних розв’язків
Нелинейные дифференциальные уравнения второго порядка с бесконечным множеством периодических решений
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Second order nonlinear differential equations with an infinite set of periodic solutions
spellingShingle Second order nonlinear differential equations with an infinite set of periodic solutions
Kiguradze, I.T.
title_short Second order nonlinear differential equations with an infinite set of periodic solutions
title_full Second order nonlinear differential equations with an infinite set of periodic solutions
title_fullStr Second order nonlinear differential equations with an infinite set of periodic solutions
title_full_unstemmed Second order nonlinear differential equations with an infinite set of periodic solutions
title_sort second order nonlinear differential equations with an infinite set of periodic solutions
author Kiguradze, I.T.
author_facet Kiguradze, I.T.
publishDate 2008
language English
container_title Нелінійні коливання
publisher Інститут математики НАН України
format Article
title_alt Нелінійні диференціальні рівняння другого порядку з нескінченною множиною періодичних розв’язків
Нелинейные дифференциальные уравнения второго порядка с бесконечным множеством периодических решений
description For the differential equation u′′ = f(t, u, u′), where the function f : R × R² → R is periodic in the first argument and f(t, x, 0) ≡ 0, sufficient conditions for the existence of a continuum of nonconstant periodic solutions are found. Для диференцiального рiвняння u′′ = f(t, u, u′), де функцiя f : R × R² → R є перiодичною за першим аргументом i f(t, x, 0) ≡ 0, знайдено необхiднi умови для iснування континууму перiодичних розв’язкiв, що не є сталими.
issn 1562-3076
url https://nasplib.isofts.kiev.ua/handle/123456789/178191
citation_txt Second order nonlinear differential equations with an infinite set of periodic solutions / I.T. Kiguradze // Нелінійні коливання. — 2008. — Т. 11, № 4. — С. 495-500. — Бібліогр.: 16 назв. — англ.
work_keys_str_mv AT kiguradzeit secondordernonlineardifferentialequationswithaninfinitesetofperiodicsolutions
AT kiguradzeit nelíníinídiferencíalʹnírívnânnâdrugogoporâdkuzneskínčennoûmnožinoûperíodičnihrozvâzkív
AT kiguradzeit nelineinyedifferencialʹnyeuravneniâvtorogoporâdkasbeskonečnymmnožestvomperiodičeskihrešenii
first_indexed 2025-11-24T21:53:31Z
last_indexed 2025-11-24T21:53:31Z
_version_ 1850498878433918976
fulltext UDC 517.9 SECOND ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH AN INFINITE SET OF PERIODIC SOLUTIONS* НЕЛIНIЙНI ДИФЕРЕНЦIАЛЬНI РIВНЯННЯ ДРУГОГО ПОРЯДКУ З НЕСКIНЧЕННОЮ МНОЖИНОЮ ПЕРIОДИЧНИХ РОЗВ’ЯЗКIВ I. Kiguradze A. Razmadze Math. Inst. 1, M. Aleksidze St., Tbilisi 0193, Georgia e-mail: kig@rmi.acnet.ge For the differential equation u′′ = f(t, u, u′), where the function f : R × R2 → R is periodic in the first argument and f(t, x, 0) ≡ 0, sufficient conditions for the existence of a continuum of nonconstant periodic solutions are found. Для диференцiального рiвняння u′′ = f(t, u, u′), де функцiя f : R × R2 → R є перiодичною за першим аргументом i f(t, x, 0) ≡ 0, знайдено необхiднi умови для iснування континууму перiо- дичних розв’язкiв, що не є сталими. The problems on the existence, uniqueness and non-uniqueness of periodic solutions of nonli- near differential equations and systems attract attention of many mathematicians and are the subject of numerous investigations (see, e.g, [1 – 16] and the references therein). Nevertheless, the description of classes of equations having a continuum of periodic solutions is far from being complete. The goal of the present paper is to fill this gap to a certain extent. Below we consider the differential equation u′′ = f(t, u, u′), (1) where the function f : R × R2 → R satisfies the local Carathéodory conditions, i.e., f(t, ·, ·) : R2 → R is continuous for almost all t ∈ R, f(·, x, y) : R → R is measurable for all (x, y) ∈ R2, and for an arbitrary ρ > 0 the function fρ, given by fρ(t) = max {|f(t, x, y)| : |x| + |y| ≤ ρ} for t ∈ R, is Lebesgue integrable on every finite interval. We are interested in the case, where the equalities f(t+ ω, x, y) = f(t, x, y), f(−t, x,−y) = f(t, x, y), (2) f(t,−x,−y) = −f(t, x, y), f(t, x, 0) = 0 (3) ∗ This work is supported by the Georgian National Science Foundation (Project № GNSF/ST06/3-002). c© I. Kiguradze, 2008 ISSN 1562-3076. Нелiнiйнi коливання, 2008, т . 11, N◦ 4 495 496 I. KIGURADZE are fulfilled on R×R2; here ω is a positive constant. In view of (3), equation (1) has a continuum of constant solutions. There naturally arises the question whether equation (1) under the conditions (2) and (3) may have nonconstant periodic solutions. As is stated in the proven below Theorem 1, the answer is positive. Let R+ = [0,+∞), Lω be the space of ω-periodic and Lebesgue integrable on [0, ω] real functions, and Mω the set of functions ϕ : R × R+ → R+ such that ϕ(·, x) ∈ Lω for arbitrary x ∈ R+, ϕ(t, ·) : R+ → R a continuous nondecreasing function for almost all t ∈ R, ϕ(t, 0) ≡ ≡ 0 and ω ∫ 0 ϕ(t, x) dt > 0 for x > 0. (4) Theorem 1. Let conditions (2), (3) be fulfilled and f(t, x, y) ≤ −ϕ(t, x)ψ(y) for t ∈ R+, x ∈ R+, 0 ≤ y ≤ r, (5) where r > 0, ϕ ∈ Mω, and ψ : [0, r] → R+ is a continuous function such that ψ(0) = 0, ψ(y) > 0 for 0 < y ≤ r, r ∫ 0 dy ψ(y) < +∞. (6) Then equation (1) has a continuum of nonconstant periodic solutions. To prove the theorem, we will need the following lemma. Lemma 1. Let inequality (5) be fulfilled, where ϕ ∈ Mω, and ψ : [0, r] → R+ is a continuous function satisfying condition (6). Then for an arbitrary c ∈ (0, r), there exists tc ∈ (0,+∞) such that equation (1) on the interval [0, tc] has a solution uc satisfying the conditions uc(0) = 0, u′c(0) = c, (7) uc(t) > 0, 0 < u′c(t) < r for 0 < t < tc, u′c(tc) = 0. (8) Proof. Let uc be a maximally extended to the right solution of problem (1), (7). Then either uc is defined on R+, and uc(t) > 0, 0 < u′c(t) < r for t ∈ R+, (9) or there exists tc ∈ (0,+∞) such that uc(t) > 0, 0 < u′c(t) < r for 0 < t < tc (10) and u′c(tc) ∈ {0, r}. (11) ISSN 1562-3076. Нелiнiйнi коливання, 2008, т . 11, N◦ 4 SECOND ORDER NONLINEAR DIFFERENTIAL EQUATIONS . . . 497 First we assume that condition (9) is fulfilled. Then in view of (5), for an arbitrarily fixed a > 0 almost everywhere on [a,+∞) the inequality ϕ(t, x) ≤ − u′′c (t) ψ(u′c(t)) is fulfilled, where x = uc(a) > 0. Integrating this inequality from a to a + kω, where k is an arbitrary natural number, due to the ω-periodicity of ϕ(·, x) and condition (6) we find k a+ω ∫ a ϕ(t, x) dt ≤ u′ c(a) ∫ u′ c(a+kω) dy ψ(y) < ρ, where ρ = r ∫ 0 dy ψ(y) < +∞. Consequently, ω ∫ 0 ϕ(t, x) dt = a+ω ∫ a ϕ(t, x) dt ≤ ρ k → 0 as k → +∞, which contradicts condition (4). The obtained contradiction proves that the function uc does not satisfy inequalities (9). Hence for some tc ∈ (0,+∞), conditions (10) and (11) are fulfilled. According to (5) and (10), almost everywhere on (0, tc) the inequality u′′c (t) ≤ 0 is satisfied. Therefore u′c(tc) ≤ c < r, whence by virtue of (11) it follows that uc(tc) = 0. Thus condition (8) holds. The lemma is proved. Lemma 2. Let on R × R2 equalities (2) be fulfilled and let the function u be a solution of equation (1) on some interval [0, t0] ⊂ R+. Then for an arbitrary natural k the function v, given by the equality v(t) = u(kω − t) for kω − t0 ≤ t ≤ kω, is a solution of equation (1) on [kω − t0, kω]. Proof. Indeed, v′′(t) = u′′(kω − t) = f ( kω − t, u(kω − t), u′(kω − t) ) = = f ( kω − t, v(t),−v′(t) ) almost everywhere on [kω − t, kω]. Thus according to (2), we find v′′(t) = f ( −t, v(t),−v′(t) ) = = f ( t, v(t), v′(t) ) almost everywhere on [kω − t, kω]. The lemma is proved. ISSN 1562-3076. Нелiнiйнi коливання, 2008, т . 11, N◦ 4 498 I. KIGURADZE Proof of the theorem. Owing to Lemma 1, for an arbitrary c ∈ (0, r) there exists tc ∈ ∈ (0,+∞) such that equation (1) on [0, tc] has a solution u satisfying conditions (7) and (8). We choose a natural number k so that kω ≥ 2tc and extend uc on R in the following manner: uc(t) = { uc(tc) for tc ≤ t ≤ kω − tc, uc(kω − t) for kω − tc ≤ t ≤ kω, uc(t+ kω) = −uc(t) for t ∈ R. By conditions (2), (3) and Lemma 2, the function uc is a 2kω-periodic solution of equation (1). On the other hand, it is evident that uc1(t) 6≡ uc2(t) 6≡ const for 0 < c1 < c2 < r. Consequently, if c runs through the interval (0, r), we obtain a continuum of periodic nonconstant solutions of equation (1). The theorem is proved. As an example, we consider the generalized Emden – Fowler equation u′′ = m ∑ k=1 pk(t)|u ′|µk |u|λksgnu, (12) where λk > 0, µk > 0 pk ∈ Lω, (13) pk(−t) = pk(t) ≤ 0 for t ∈ R, ω ∫ 0 pk(t) dt < 0, k = 1, . . . ,m. (14) The following proposition holds. Corollary. Let conditions (13) and (14) be fulfilled. Then for the existence of a continuum of periodic solutions of equation (12) it is necessary and sufficient that min{µ1, . . . , µn} < 1. (15) Proof. Assume first that along with (13) and (14) condition (15) is fulfilled. Then without loss of generality we can assume that µ1 < 1. Due to condition (13), the function f, given by the equality f(t, x, y) = m ∑ k=1 pk(t)|y| µk |x|λksgnx, ISSN 1562-3076. Нелiнiйнi коливання, 2008, т . 11, N◦ 4 SECOND ORDER NONLINEAR DIFFERENTIAL EQUATIONS . . . 499 satisfies conditions (2) and (3). On the other hand, for an arbitrary r > 0 inequality (5) is fulfilled, where ϕ(t, x) = |p1(t)|x λ1 , ψ(y) = yµ1 . Moreover, ϕ ∈ Mω, and ψ satisfies condition (6) since ω ∫ 0 |p1(t)| dt > 0 and 0 < µ1 < 1. Consequently, all the conditions of the above-given theorem are fulfilled which guarantees the existence of a continuum of nonconstant ω-periodic solutions of equation (12). It remains to state that if µk ≥ 1, k = 1, . . . ,m, (16) then an arbitrary periodic solution u of equation (12) is constant. Indeed, almost everywhere on R the equality u′′(t) = p(t)u′(t) (17) is fulfilled, where p(t) = m ∑ k=1 pk(t)|u ′(t)|µk−1|u(t)|λksgn (u(t)u′(t)); in addition, in view of (16), we have p ∈ Lω. (18) On the other hand, owing to the ω-periodicity of u, there exists t0 ∈ R such that u′(t0) = 0. Thus it follows from (17) and (18) that u′(t) ≡ 0, i.e., u(t) ≡ const. The corollary is proved. Remark. If pk(t) ≡ 0, k = 1, . . . ,m, then equation (12) has no nonconstant periodic solution. Consequently, condition (14) in the above-given corollary is essential and it cannot be weakened. 1. Fučik S., Kufner A. Nonlinear differential equations. — Amsterdam etc.: Elsevier Sci. Publ. Comp., 1980. 2. Gaianes R. E., Mawhin J. L. Concidence degree and nonlinear differential equations. — Berlin etc.: Springer, 1977. 3. Kiguradze I. Some singular boundary value problems for ordinary differential equations (in Russian). — Tbilisi: Tbilisi Univ. Press, 1975. 4. Kiguradze I. Boundary value problems for systems of ordinary differential equations (in Russian // Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Novejshie Dostizh. — 1987. — 30. — S. 3 – 103. 5. Kiguradze I. On a resonance periodic problem for nonautonomous higher-order differential equations (in Russian) // Differents. Uravneniya. — 2008. — 44, № 8. — S. 1022 – 1032. 6. Kiguradze I., Partsvania N., Puža B. On periodic solutions of higher-order functional differential equations // Boundary Value Problems. — 2008. — P. 1 – 18. ISSN 1562-3076. Нелiнiйнi коливання, 2008, т . 11, N◦ 4 500 I. KIGURADZE 7. Kiguradze I., Stanék S. On periodic boundary value problem for the equation u′′ = f(t, u, u′) with one-sided growth restrictions on f // Nonlinear Anal. — 2002. — 48, № 7. — P. 1065 – 1075. 8. Krasnosel’skii M. A. The operator of translation along the trajectories of differential equations. — Provi- dence, R.I.: Amer. Math. Soc., 1968. 9. Lasota A., Opial Z. Sur les solutions périodiques des équations différentielles ordinaires // Ann. pol. math. — 1964. — 16. — P. 69 – 94. 10. Mawhin J. Continuation theorems and periodic solutions of ordinary differential equations // Topological Methods in Differential Equations and Inclusions (Montreal, PQ, 1994): NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. — Dordrecht: Kluwer Acad. Publ., 1995. — 472. — P. 291 – 375. 11. Mukhigulashvili S. On the solvability of a periodic problem for second-order nonlinear functional-differential equations (in Russian) // Differents. Uravneniya. — 2006. — 42, № 3. — S. 356 – 365. 12. Omari P., Zanolin F. On forced nonlinear oscillations in nth order differential systems with geometric condi- tions // Nonlinear Anal., Theory Meth. and Appl. — 1984. — 8. — P. 723 – 748. 13. Reissig R., Sansone G., Conti R. Qualitative theorie nichtlineare differentialgleichungen. — Roma: Edizioni Cremonese, 1963. 14. Samoilenko A. M., Laptinskii V. N. On estimates for periodic solutions of differential equations (in Russian) // Dokl. Akad. Nauk Ukr. SSR. Ser. A. — 1982. — № 1. — S. 30 – 32. 15. Samoilenko A. M., Ronto N. I. Numerical-analytic methods of investigating periodic solutions. — Moscow: Mir, 1980. 16. Trubnikov Yu. V., Perov A. I. Differential equations with monotone nonlinearities (in Russian). — Misnk: Nauka i Tekhnika, 1986. Received 03.10.08 ISSN 1562-3076. Нелiнiйнi коливання, 2008, т . 11, N◦ 4