Задача про математичний сейф та її розв'язання (частина 2)
Мета статті. Представлення методів розв’язання задачі про математичний сейф (в матричному та графовому виглядах) для різноманітних її варіацій, які пов’язані як з областю, над якою розглядається задача, так і зі структурою систем лінійних рівнянь над цими областями. Розглянуто розв’язання відповідн...
Збережено в:
| Дата: | 2021 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2021
|
| Назва видання: | Кібернетика та комп’ютерні технології |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/179350 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Задача про математичний сейф та її розв'язання (частина 2) / С.Л. Кривий, Г.І. Гогерчак // Кібернетика та комп’ютерні технології: Зб. наук. пр. — 2021. — № 1. — С. 16-28. — Бібліогр.: 3 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Мета статті. Представлення методів розв’язання задачі про математичний сейф (в матричному та графовому виглядах) для різноманітних її варіацій, які пов’язані як з областю, над якою розглядається задача, так і зі структурою систем лінійних рівнянь над цими областями. Розглянуто розв’язання відповідних систем у скінченних простих полях, скінченних полях, примарних кільцях лишків та скінченних кільцях. Всі наведені алгоритми мають оцінки часової складності. Результати. Наведено приклади розв’язання задачі про математичний сейф, умови існування розв’язків в різних областях, над якими ця задача розглядається (скінченні прості поля, скінченні поля, примарні кільця, і асоціативно-комутативні кільця з одиницею). Вибір відповідної області над якою розглядається задача про математичний сейф, та відповідного алгоритму розв’язання залежить від кількості позицій засувів сейфа. Всі наведені алгоритми супроводжуються оцінками їх часової складності, які розглядалися в першій частині даної роботи.. |
|---|