Застосування нового аналітично-числового методу Остроградського до розв'язування плоскої задачі теорії пружності

A boundary-value problem for the biharmonic equation is solved, and the stress-strain state (SSS) of a rectangular plate loaded on the sides by forces is defined. The SSS is presented in the form of a series in specially constructed Saint-Venant functions. The series coefficients are found from the...

Full description

Saved in:
Bibliographic Details
Date:2007
Main Author: Ревенко, В.П.
Format: Article
Language:Ukrainian
Published: Видавничий дім "Академперіодика" НАН України 2007
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/1794
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Застосування нового аналітично-числового методу Остроградського до розв'язування плоскої задачі теорії пружності / В.П. Ревенко // Доп. НАН України. — 2007. — N 4. — С. 72-77. — Бібліогр.: 12 назв. — укp.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:A boundary-value problem for the biharmonic equation is solved, and the stress-strain state (SSS) of a rectangular plate loaded on the sides by forces is defined. The SSS is presented in the form of a series in specially constructed Saint-Venant functions. The series coefficients are found from the condition of minimum of the deviation square integral of a solution from the given boundary conditions on the plate sides. The Bessel inequality is proved, and the effective valuation of the exactness of the general solution is given. The results of numerical analysis of the stresses are presented.
ISSN:1025-6415