Основні аспекти семантичного анотування великих даних

Семантичні анотації, в силу своєї структурованості, є невід’ємною складовою ефективного вирішення задач великих даних. Але, сама проблема визначення семантичних анотацій є досить не тривіальною. Ручне анотування є не прийнятним для великих даних з огляду на їх розмір та різнорідність, а також трудом...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Проблеми програмування
Дата:2020
Автор: Захарова, О.В.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут програмних систем НАН України 2020
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/180491
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Основні аспекти семантичного анотування великих даних / О.В. Захарова // Проблеми програмування. — 2020. — № 4. — С. 22-33. — Бібліогр.: 23 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-180491
record_format dspace
spelling Захарова, О.В.
2021-09-30T18:20:38Z
2021-09-30T18:20:38Z
2020
Основні аспекти семантичного анотування великих даних / О.В. Захарова // Проблеми програмування. — 2020. — № 4. — С. 22-33. — Бібліогр.: 23 назв. — укр.
1727-4907
DOI: https://doi.org/10.15407/pp2020.04.022
https://nasplib.isofts.kiev.ua/handle/123456789/180491
004.4'24
Семантичні анотації, в силу своєї структурованості, є невід’ємною складовою ефективного вирішення задач великих даних. Але, сама проблема визначення семантичних анотацій є досить не тривіальною. Ручне анотування є не прийнятним для великих даних з огляду на їх розмір та різнорідність, а також трудомісткість та вартосність самого процесу, задача повністю автоматичного анотування для великих даних поки що не має вирішення. Тобто вирішення задачі семантичного анотування вимагає сучасних змішаних підходів, які б на основі та із застосуванням існуючого теоретичного апарату, а саме методів та моделей машинного навчання, статистичного навчання, роботи з контентами різних форматів представлення, обробки текстів природньою мовою, тощо, забезпечували вирішення основних задач анотування: виявлення та витягнення сутностей та відношень з контенту будь-якого типу та визначення семантичних анотацій за основі існуючих джерел знань (словників, онтологій, тощо). Отримані анотації повинні бути точними та забезпечувати подальшу можливість вирішення прикладних задач з анотованими даними. Слід зазначити, що контенти великих даних є дуже різноманітними, як наслідок, дуже різняться їх властивості, що підлягають анотуванню. Це вимагає різних метаданих для опису даних та обумовлює наявність великої кількості різних стандартів метаданих для даних різних типів чи форматів представлення. Але, для ефективного вирішення задачі анотування треба мати узагальнену характеристику типів метаданих, в межах якої розглядати їх специфіку. Визначення загальної класифікації метаданих та спільних аспектів та підходів до семантичного анотування контенту великих даних за їх допомогою і є метою даної роботи.
Semantic annotations, due to their structure, are an integral part of the effective solution of big data problems. However, the problem of defining semantic annotations is not trivial. Manual annotation is not acceptable for big data due to their size and heterogeneity, as well as the complexity and cost of the annotation process, the automatic annotation task for big data has not yet decision. So, resolving the problem of semantic annotation requires modern mixed approaches, which would be based on and using the existing theoretical apparatus, namely methods and models of machine learning, statistical learning, working with content of different types and formats, natural language processing, etc. It also should provide solutions for main annotation tasks: discovering and extracting entities and relationships from content of any type and defining semantic annotations based on existing sources of knowledge (dictionaries, ontologies, etc.). The obtained annotations must be accurate and provide a further opportunity to solve application problems with the annotated data. Note that the big data contents are very different, as a result, their properties that should be annotated are very different too. This requires different metadata to describe the data. It leads to large number of different metadata standards for data of different types or formats appears. However, to effectively solve the annotation problem, it is necessary to have a generalized description of the metadata types, and we have to consider metadata specificity within this description. The purpose of this work is to define the general classification of metadata and determinate common aspects and approaches to big data semantic annotation
uk
Інститут програмних систем НАН України
Проблеми програмування
Моделі та засоби систем баз даних і знань
Основні аспекти семантичного анотування великих даних
Main Aspects of Big Data Semantic Annotation
Основные аспекты семантического аннотирования больших данных
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Основні аспекти семантичного анотування великих даних
spellingShingle Основні аспекти семантичного анотування великих даних
Захарова, О.В.
Моделі та засоби систем баз даних і знань
title_short Основні аспекти семантичного анотування великих даних
title_full Основні аспекти семантичного анотування великих даних
title_fullStr Основні аспекти семантичного анотування великих даних
title_full_unstemmed Основні аспекти семантичного анотування великих даних
title_sort основні аспекти семантичного анотування великих даних
author Захарова, О.В.
author_facet Захарова, О.В.
topic Моделі та засоби систем баз даних і знань
topic_facet Моделі та засоби систем баз даних і знань
publishDate 2020
language Ukrainian
container_title Проблеми програмування
publisher Інститут програмних систем НАН України
format Article
title_alt Main Aspects of Big Data Semantic Annotation
Основные аспекты семантического аннотирования больших данных
description Семантичні анотації, в силу своєї структурованості, є невід’ємною складовою ефективного вирішення задач великих даних. Але, сама проблема визначення семантичних анотацій є досить не тривіальною. Ручне анотування є не прийнятним для великих даних з огляду на їх розмір та різнорідність, а також трудомісткість та вартосність самого процесу, задача повністю автоматичного анотування для великих даних поки що не має вирішення. Тобто вирішення задачі семантичного анотування вимагає сучасних змішаних підходів, які б на основі та із застосуванням існуючого теоретичного апарату, а саме методів та моделей машинного навчання, статистичного навчання, роботи з контентами різних форматів представлення, обробки текстів природньою мовою, тощо, забезпечували вирішення основних задач анотування: виявлення та витягнення сутностей та відношень з контенту будь-якого типу та визначення семантичних анотацій за основі існуючих джерел знань (словників, онтологій, тощо). Отримані анотації повинні бути точними та забезпечувати подальшу можливість вирішення прикладних задач з анотованими даними. Слід зазначити, що контенти великих даних є дуже різноманітними, як наслідок, дуже різняться їх властивості, що підлягають анотуванню. Це вимагає різних метаданих для опису даних та обумовлює наявність великої кількості різних стандартів метаданих для даних різних типів чи форматів представлення. Але, для ефективного вирішення задачі анотування треба мати узагальнену характеристику типів метаданих, в межах якої розглядати їх специфіку. Визначення загальної класифікації метаданих та спільних аспектів та підходів до семантичного анотування контенту великих даних за їх допомогою і є метою даної роботи. Semantic annotations, due to their structure, are an integral part of the effective solution of big data problems. However, the problem of defining semantic annotations is not trivial. Manual annotation is not acceptable for big data due to their size and heterogeneity, as well as the complexity and cost of the annotation process, the automatic annotation task for big data has not yet decision. So, resolving the problem of semantic annotation requires modern mixed approaches, which would be based on and using the existing theoretical apparatus, namely methods and models of machine learning, statistical learning, working with content of different types and formats, natural language processing, etc. It also should provide solutions for main annotation tasks: discovering and extracting entities and relationships from content of any type and defining semantic annotations based on existing sources of knowledge (dictionaries, ontologies, etc.). The obtained annotations must be accurate and provide a further opportunity to solve application problems with the annotated data. Note that the big data contents are very different, as a result, their properties that should be annotated are very different too. This requires different metadata to describe the data. It leads to large number of different metadata standards for data of different types or formats appears. However, to effectively solve the annotation problem, it is necessary to have a generalized description of the metadata types, and we have to consider metadata specificity within this description. The purpose of this work is to define the general classification of metadata and determinate common aspects and approaches to big data semantic annotation
issn 1727-4907
url https://nasplib.isofts.kiev.ua/handle/123456789/180491
citation_txt Основні аспекти семантичного анотування великих даних / О.В. Захарова // Проблеми програмування. — 2020. — № 4. — С. 22-33. — Бібліогр.: 23 назв. — укр.
work_keys_str_mv AT zaharovaov osnovníaspektisemantičnogoanotuvannâvelikihdanih
AT zaharovaov mainaspectsofbigdatasemanticannotation
AT zaharovaov osnovnyeaspektysemantičeskogoannotirovaniâbolʹšihdannyh
first_indexed 2025-12-02T11:05:32Z
last_indexed 2025-12-02T11:05:32Z
_version_ 1850862313779757056